Mechanism of collision and drainage of liquid droplet around sphere placed within a hollow cylinder

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Prakasha Chandra Sahoo , Jnana Ranjan Senapati , Basanta Kumar Rana
{"title":"Mechanism of collision and drainage of liquid droplet around sphere placed within a hollow cylinder","authors":"Prakasha Chandra Sahoo ,&nbsp;Jnana Ranjan Senapati ,&nbsp;Basanta Kumar Rana","doi":"10.1016/j.compfluid.2024.106365","DOIUrl":null,"url":null,"abstract":"<div><p>It is attempted earnestly to elucidate the mechanism of collision and drainage of liquid mass around the spherical substrate suspended within the hollow cylinder using Gerris open-source code by employing Volume of Fluid (VOF) methodology. Various influencing parameters, namely, sphere-to-droplet diameter ratio <span><math><mrow><mo>(</mo><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow><mo>)</mo></mrow></math></span>, Weber number<span><math><mrow><mspace></mspace><mo>(</mo><mrow><mi>W</mi><mi>e</mi></mrow><mo>)</mo></mrow></math></span>, Ohnesorge number <span><math><mrow><mo>(</mo><mrow><mi>O</mi><mi>h</mi></mrow><mo>)</mo></mrow></math></span>, and Bond number<span><math><mrow><mo>(</mo><mrow><mi>B</mi><mi>o</mi></mrow><mo>)</mo></mrow></math></span> are employed to observe the drainage mechanism through the constricted path. The pattern of the interfacial morphology of droplet collision and drainage mechanism is presented using numerical contours. It is important to mention herein that the droplet undergoes several important stages like collision, cap formation, engulfment, drainage, and pinch-off. The passage between the sphere and the cylinder is sufficiently wider at a lower value of <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> due to which the liquid mass is drained out completely without any hindrance. The drainage process becomes considerably faster at a higher <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> compared to a lower <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>. In addition, the flow of liquid mass through the passage gets delayed at a greater <span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span> than a lower <span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span> assuming a given value of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span>. The liquid drop requires less time to pass through the constricted path at lower <span><math><mrow><mi>B</mi><mi>o</mi></mrow></math></span> for a given value of <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> and <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>. We have also attempted to quantify the drainage of liquid volume passes through the passage, which is denoted as <span><math><mrow><mo>(</mo><mrow><msup><mrow><mi>Q</mi></mrow><mo>*</mo></msup><mo>=</mo><mi>Q</mi><mo>/</mo><msub><mi>Q</mi><mi>o</mi></msub></mrow><mo>)</mo></mrow></math></span>. One can notice the increasing pattern of <span><math><mrow><mi>Q</mi><mo>/</mo><msub><mi>Q</mi><mi>o</mi></msub></mrow></math></span> with continuous progress of time stamp for all cases of <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> for a fixed value of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106365"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302400197X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

It is attempted earnestly to elucidate the mechanism of collision and drainage of liquid mass around the spherical substrate suspended within the hollow cylinder using Gerris open-source code by employing Volume of Fluid (VOF) methodology. Various influencing parameters, namely, sphere-to-droplet diameter ratio (Ds/Do), Weber number(We), Ohnesorge number (Oh), and Bond number(Bo) are employed to observe the drainage mechanism through the constricted path. The pattern of the interfacial morphology of droplet collision and drainage mechanism is presented using numerical contours. It is important to mention herein that the droplet undergoes several important stages like collision, cap formation, engulfment, drainage, and pinch-off. The passage between the sphere and the cylinder is sufficiently wider at a lower value of Ds/Do due to which the liquid mass is drained out completely without any hindrance. The drainage process becomes considerably faster at a higher We compared to a lower We. In addition, the flow of liquid mass through the passage gets delayed at a greater Oh than a lower Oh assuming a given value of We and Ds/Do. The liquid drop requires less time to pass through the constricted path at lower Bo for a given value of Ds/Do and We. We have also attempted to quantify the drainage of liquid volume passes through the passage, which is denoted as (Q*=Q/Qo). One can notice the increasing pattern of Q/Qo with continuous progress of time stamp for all cases of Ds/Do for a fixed value of We.

置于空心圆筒内的球体周围液滴的碰撞和排泄机理
本研究采用流体体积(VOF)方法,使用 Gerris 开源代码,认真尝试阐明悬浮在空心圆柱体内的球形基质周围的液块碰撞和排水机制。采用各种影响参数,即球体与液滴直径比 (Ds/Do)、韦伯数 (We)、奥内索格数 (Oh) 和邦德数 (Bo),来观察通过收缩路径的排水机制。液滴碰撞和排水机制的界面形态是通过数值等值线呈现的。在此有必要提及液滴经历的几个重要阶段,如碰撞、帽形成、吞噬、排水和夹断。当 Ds/Do 值较低时,球体和圆柱体之间的通道足够宽,因此液滴可以毫无阻碍地完全排出。与较低的 We 值相比,较高的 We 值下的排液过程要快得多。此外,在给定 We 和 Ds/Do 值的情况下,Oh 越大,液流通过通道的时间越短。在给定 Ds/Do 和 We 值的情况下,当 Bo 值较低时,液滴通过收缩路径所需的时间较短。我们还尝试量化通过通道的液体体积排水量,即(Q*=Q/Qo)。我们可以注意到,在 We 值固定的情况下,在所有 Ds/Do 条件下,Q/Qo 都会随着时间戳的推移而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信