Kai Shang, Xudong Chen, D. Shi, Wenwen Wu, Ningning Wang
{"title":"Flexural Performance and Failure Mechanism of High-Strength Coral Sand Reinforced Concrete Slab by Experiment and Simulation","authors":"Kai Shang, Xudong Chen, D. Shi, Wenwen Wu, Ningning Wang","doi":"10.1520/jte20230684","DOIUrl":null,"url":null,"abstract":"\n Coral sand is very important to the construction of coastal defense engineering, and the research of coral sand concrete slabs is also in the initial stage. To investigate the mechanical properties of high-strength coral sand reinforced concrete slab (HSCSRCS), a four-point flexural loading test was carried out for three kinds of components with different reinforcement ratios. The test results actually showed that the HSCSRCS components prepared by the optimized mix ratio and the process had the characteristics of high strength, large brittleness, and high bearing capacity, and the cracking load of HSCSRCS components was large at 30 % of the ultimate bearing capacity because of the pore filling inside the concrete aggregate. The damage process of HSCSRCS could be divided into four stages, representing the primary pressure, cracking, flexural loading, and damage stage, and the mechanical properties were relatively stable because of the broken internal particles and continuous pore filling. The initial crack of the component was mainly caused by sliding and rotation of the particles at the bottom of the loading point plate along the structural surface, which gradually expanded from the middle area to the four corners of the plate, and the distribution mode was dense at the bottom of the loading points and sparse at other areas. ANSYS finite element analysis program was used for modeling and solving, which showed that the simulation results of cracking load, bearing capacity, load-displacement curve, and stress cloud map are consistent with the actual experiment results.","PeriodicalId":17109,"journal":{"name":"Journal of Testing and Evaluation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Testing and Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1520/jte20230684","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Coral sand is very important to the construction of coastal defense engineering, and the research of coral sand concrete slabs is also in the initial stage. To investigate the mechanical properties of high-strength coral sand reinforced concrete slab (HSCSRCS), a four-point flexural loading test was carried out for three kinds of components with different reinforcement ratios. The test results actually showed that the HSCSRCS components prepared by the optimized mix ratio and the process had the characteristics of high strength, large brittleness, and high bearing capacity, and the cracking load of HSCSRCS components was large at 30 % of the ultimate bearing capacity because of the pore filling inside the concrete aggregate. The damage process of HSCSRCS could be divided into four stages, representing the primary pressure, cracking, flexural loading, and damage stage, and the mechanical properties were relatively stable because of the broken internal particles and continuous pore filling. The initial crack of the component was mainly caused by sliding and rotation of the particles at the bottom of the loading point plate along the structural surface, which gradually expanded from the middle area to the four corners of the plate, and the distribution mode was dense at the bottom of the loading points and sparse at other areas. ANSYS finite element analysis program was used for modeling and solving, which showed that the simulation results of cracking load, bearing capacity, load-displacement curve, and stress cloud map are consistent with the actual experiment results.
期刊介绍:
This journal is published in six issues per year. Some issues, in whole or in part, may be Special Issues focused on a topic of interest to our readers.
This flagship ASTM journal is a multi-disciplinary forum for the applied sciences and engineering. Published bimonthly, the Journal of Testing and Evaluation presents new technical information, derived from field and laboratory testing, on the performance, quantitative characterization, and evaluation of materials. Papers present new methods and data along with critical evaluations; report users'' experience with test methods and results of interlaboratory testing and analysis; and stimulate new ideas in the fields of testing and evaluation.
Major topic areas are fatigue and fracture, mechanical testing, and fire testing. Also publishes review articles, technical notes, research briefs and commentary.