Prediction of the heat of hydration of fly ash concrete by adiabatic temperature rise test and regression analysis

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Hyun-Do Yun, W. Park, Y. Jang, Sun-Woo Kim
{"title":"Prediction of the heat of hydration of fly ash concrete by adiabatic temperature rise test and regression analysis","authors":"Hyun-Do Yun, W. Park, Y. Jang, Sun-Woo Kim","doi":"10.1680/jmacr.24.00002","DOIUrl":null,"url":null,"abstract":"This paper deals with the proposal of a model that can predict heat of hydration of concrete containing fly ash and the adiabatic temperature rise test results that are the basis of the model. For the adiabatic temperature rise tests, total of twelve concrete mixtures were prepared with variables of the percentage of fly ash replacement and w/cm. The test results indicate that the replacement of fly ash significantly reduces the adiabatic temperature rise and delays the early hydration of fly-ash blended cements. Additionally, w/cm was found to influence not only the maximum adiabatic temperature rise but also the slope of the temperature rise. Therefore, a regression analysis was conducted to propose three parameters (hydration time parameter, hydration slope parameter, ultimate degree of hydration) for the heat of hydration model of concrete containing fly ash. The developed heat of hydration model was validated using test data. Models that did not consider w/cm, similar to those proposed by other researchers, failed to accurately predict the test results. However, the final model developed, which incorporates w/cm, accurately predicted the test results, as confirmed through this study.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.24.00002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the proposal of a model that can predict heat of hydration of concrete containing fly ash and the adiabatic temperature rise test results that are the basis of the model. For the adiabatic temperature rise tests, total of twelve concrete mixtures were prepared with variables of the percentage of fly ash replacement and w/cm. The test results indicate that the replacement of fly ash significantly reduces the adiabatic temperature rise and delays the early hydration of fly-ash blended cements. Additionally, w/cm was found to influence not only the maximum adiabatic temperature rise but also the slope of the temperature rise. Therefore, a regression analysis was conducted to propose three parameters (hydration time parameter, hydration slope parameter, ultimate degree of hydration) for the heat of hydration model of concrete containing fly ash. The developed heat of hydration model was validated using test data. Models that did not consider w/cm, similar to those proposed by other researchers, failed to accurately predict the test results. However, the final model developed, which incorporates w/cm, accurately predicted the test results, as confirmed through this study.
通过绝热温升试验和回归分析预测粉煤灰混凝土的水化热
本文提出了一个可以预测含粉煤灰混凝土水化热的模型,以及作为该模型基础的绝热温升试验结果。在绝热温升试验中,共配制了 12 种混凝土混合物,其中粉煤灰掺量和 w/cm 均为变量。试验结果表明,粉煤灰掺量可显著降低绝热温升,并延缓粉煤灰掺合料的早期水化。此外,还发现 w/cm 不仅影响最大绝热温升,还影响温升的斜率。因此,我们进行了回归分析,为含粉煤灰的混凝土水化热模型提出了三个参数(水化时间参数、水化斜率参数、最终水化程度)。利用试验数据对所建立的水化热模型进行了验证。与其他研究人员提出的模型类似,未考虑 w/cm 的模型无法准确预测试验结果。然而,最终开发的模型包含了 w/cm,可以准确预测测试结果,这一点在本研究中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信