Controllable preparation of MnCo2O4 spinel and catalytic persulfate activation in organic wastewater treatment: Experimental and immobilized evaluation
IF 4.8 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qixu Shi , Juexiu Li , Yongpeng Ma , Rui Zhao , Miaomiao Li , Xinrui Lei , Maiqi Sun , Yongchao Zhao , Gaihuan Ren , Jinping Jia
{"title":"Controllable preparation of MnCo2O4 spinel and catalytic persulfate activation in organic wastewater treatment: Experimental and immobilized evaluation","authors":"Qixu Shi , Juexiu Li , Yongpeng Ma , Rui Zhao , Miaomiao Li , Xinrui Lei , Maiqi Sun , Yongchao Zhao , Gaihuan Ren , Jinping Jia","doi":"10.1016/j.pnsc.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>Transitional metal oxides<span> are excellent candidates as heterogeneous catalysts for activating persulfate towards organics degradation. In this study, MnCo</span></span><sub>2</sub>O<sub>4</sub> spinel was successfully prepared using a solvent-free molten method. The catalytic performance was systematically investigated and MnCo<sub>2</sub>O<sub>4</sub><span> powder catalyst was successfully immobilized on polyurethane (PU) membrane through electrospinning to assess its application potential. The results showed that peroxymonosulfate (0.1 g L</span><sup>−1</sup>) activated by MnCo<sub>2</sub>O<sub>4</sub> (0.1 g L<sup>−1</sup>) reached 99.92 % degradation in 10 min when treating 0.04 g L<sup>−1</sup><span> rhodamine B<span> as target pollutant. The abundant oxygen vacancies formation, synergistic effect of Co and Mn ions and high electron transfer mobility are contributing to production of reactive oxygen species. Combining with quenching experiment and time-resolved EPR, the contribution of various active species was proposed, of which </span></span><sup>1</sup>O<sub>2</sub> exhibited the dominant role. The flowing reaction run by the MnCo<sub>2</sub>O<sub>4</sub>-PU membrane activating PMS exhibited universal degradation on different target pollutants.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 4","pages":"Pages 776-786"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001515","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transitional metal oxides are excellent candidates as heterogeneous catalysts for activating persulfate towards organics degradation. In this study, MnCo2O4 spinel was successfully prepared using a solvent-free molten method. The catalytic performance was systematically investigated and MnCo2O4 powder catalyst was successfully immobilized on polyurethane (PU) membrane through electrospinning to assess its application potential. The results showed that peroxymonosulfate (0.1 g L−1) activated by MnCo2O4 (0.1 g L−1) reached 99.92 % degradation in 10 min when treating 0.04 g L−1 rhodamine B as target pollutant. The abundant oxygen vacancies formation, synergistic effect of Co and Mn ions and high electron transfer mobility are contributing to production of reactive oxygen species. Combining with quenching experiment and time-resolved EPR, the contribution of various active species was proposed, of which 1O2 exhibited the dominant role. The flowing reaction run by the MnCo2O4-PU membrane activating PMS exhibited universal degradation on different target pollutants.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.