Quaternary piezoelectric ceramics with ultra-high mechanical quality factor

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Quaternary piezoelectric ceramics with ultra-high mechanical quality factor","authors":"","doi":"10.1016/j.materresbull.2024.112995","DOIUrl":null,"url":null,"abstract":"<div><p><strong>The development of piezoelectric ceramics with large piezoelectric coefficient (<em>d</em><sub>33</sub>), high Curie temperature (<em>T</em><sub>C</sub>) and high mechanical quality factor (<em>Q</em><sub>m</sub>) is still a key challenge for practical application for high-power device</strong>. Herein, a novel quaternary piezoelectric ceramics of (0.125-<em>x</em>) Pb<sub>0.98</sub>Sr<sub>0.02</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>–0.445PbTiO<sub>3</sub>–0.43PbZrO<sub>3</sub>-<em>x</em>Pb(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> (abbreviated as <em>x</em>PMnN-PSMN-PZT) were prepared by the solid-state sintering method. The hard dopant PMnN induced the morphotropic phase boundary (MPB) of PSMN-PZT into a tetragonal-rich region. In addition, the XPS and EPR analysis proved the existence of a large amount of oxygen vacancies (<span><math><msubsup><mi>V</mi><mi>o</mi><mrow><mo>•</mo><mo>•</mo></mrow></msubsup></math></span>) in PMnN-PSMN-PZT ceramic system. The composition near tetragonal-rich MPB region and the appearance of defect dipoles formed a strong coupling effect on the domain wall motion and leaded to an ultra <em>Q</em><sub>m</sub> value. The optimum piezoelectric properties were achieved at <em>x</em> = 9 mol% with <em>d</em><sub>33</sub> = 260 pC/N, <em>Q</em><sub>m</sub> = 3880, tanδ = 0.009 and <em>T</em><sub>C</sub> = 332 °C. A significant internal bias field (<em>E</em><sub>bias</sub>) of 8.83 kV/cm was also observed in 0.09PMnN-PSMN-PZT ceramics. The origin of this excellent piezoelectric properties was explained by the phase structure, piezoelectric and dielectric analysis. This work demonstrated a rational strategy to obtain ultra <em>Q</em><sub>m</sub> value for high-power piezoceramics.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082400326X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of piezoelectric ceramics with large piezoelectric coefficient (d33), high Curie temperature (TC) and high mechanical quality factor (Qm) is still a key challenge for practical application for high-power device. Herein, a novel quaternary piezoelectric ceramics of (0.125-x) Pb0.98Sr0.02(Mg1/3Nb2/3)O3–0.445PbTiO3–0.43PbZrO3-xPb(Mn1/3Nb2/3)O3 (abbreviated as xPMnN-PSMN-PZT) were prepared by the solid-state sintering method. The hard dopant PMnN induced the morphotropic phase boundary (MPB) of PSMN-PZT into a tetragonal-rich region. In addition, the XPS and EPR analysis proved the existence of a large amount of oxygen vacancies (Vo) in PMnN-PSMN-PZT ceramic system. The composition near tetragonal-rich MPB region and the appearance of defect dipoles formed a strong coupling effect on the domain wall motion and leaded to an ultra Qm value. The optimum piezoelectric properties were achieved at x = 9 mol% with d33 = 260 pC/N, Qm = 3880, tanδ = 0.009 and TC = 332 °C. A significant internal bias field (Ebias) of 8.83 kV/cm was also observed in 0.09PMnN-PSMN-PZT ceramics. The origin of this excellent piezoelectric properties was explained by the phase structure, piezoelectric and dielectric analysis. This work demonstrated a rational strategy to obtain ultra Qm value for high-power piezoceramics.

Abstract Image

具有超高机械品质因数的四元压电陶瓷
开发具有大压电系数(d33)、高居里温度(TC)和高机械品质因数(Qm)的压电陶瓷仍是大功率器件实际应用的关键挑战。本文采用固态烧结法制备了 (0.125-x) Pb0.98Sr0.02(Mg1/3Nb2/3)O3-0.445PbTiO3-0.43PbZrO3-xPb(Mn1/3Nb2/3)O3(简称 xPMnN-PSMN-PZT)的新型四元压电陶瓷。硬掺杂剂 PMnN 诱导 PSMN-PZT 的各向异性相界(MPB)进入富四方区域。此外,XPS和EPR分析证明了PMnN-PSMN-PZT陶瓷体系中存在大量氧空位(Vo--)。富四方 MPB 区附近的成分和缺陷偶极子的出现对畴壁运动形成了强烈的耦合效应,并导致了超 Qm 值。在 x = 9 mol%、d33 = 260 pC/N、Qm = 3880、tanδ = 0.009 和 TC = 332 °C 时,压电特性达到最佳。在 0.09PMnN-PSMN-PZT 陶瓷中还观察到了 8.83 kV/cm 的显著内部偏压场 (Ebias)。相结构、压电和介电分析解释了这种优异压电特性的来源。这项工作展示了获得大功率压电陶瓷超 Qm 值的合理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信