Dmitry Galyamin , Eduardo Laborda , Juan Pablo Esquivel , Joaquín González , Neus Sabaté
{"title":"Unveiling the effect of paper matrix on the electrochemical response of diffusive redox probes","authors":"Dmitry Galyamin , Eduardo Laborda , Juan Pablo Esquivel , Joaquín González , Neus Sabaté","doi":"10.1016/j.snr.2024.100224","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the influence of paper substrate selection on the electrochemical response of an electrochemical paper-based analytical device (ePAD). Various paper substrates commonly employed in this type of devices such as cellulose, nitrocellulose and glass-fibre based medical grade materials are evaluated using chronoamperometric measurements. Both theoretical modelling and experimental analyses are conducted to understand the diffusion behaviour of widely employed two redox probes, [Fe(CN)<sub>6</sub>]<sup>3−</sup> and FcMeOH. Findings show that glass fibre substrates show similar performance to liquid drop conditions while nitrocellulose cause a decrease in current after a short measurement period, mainly due to a thin-layer effect. Cellulose-based substrates decrease the diffusivity of redox species, especially for charged species, indicating potential limitations in their use for chronoamperometric measurements. The study offers valuable insights into the electrochemical behaviour of paper substrates in ePADs, laying the groundwork for future research in this area.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100224"},"PeriodicalIF":6.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000407/pdfft?md5=bb215137d80b372495974d62dfaef5da&pid=1-s2.0-S2666053924000407-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the influence of paper substrate selection on the electrochemical response of an electrochemical paper-based analytical device (ePAD). Various paper substrates commonly employed in this type of devices such as cellulose, nitrocellulose and glass-fibre based medical grade materials are evaluated using chronoamperometric measurements. Both theoretical modelling and experimental analyses are conducted to understand the diffusion behaviour of widely employed two redox probes, [Fe(CN)6]3− and FcMeOH. Findings show that glass fibre substrates show similar performance to liquid drop conditions while nitrocellulose cause a decrease in current after a short measurement period, mainly due to a thin-layer effect. Cellulose-based substrates decrease the diffusivity of redox species, especially for charged species, indicating potential limitations in their use for chronoamperometric measurements. The study offers valuable insights into the electrochemical behaviour of paper substrates in ePADs, laying the groundwork for future research in this area.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.