Comparison of two hemostatic skin adhesive dressings, incorporating multi-metal bioactive glass

Q1 Medicine
Melina Ghasemian , Neda Alasvand , Ali Samadikuchaksaraei , Hajir Bahrami , Mahmoud Azami , Farzad Ramroudi , Soheila Naderi Gharahgheshlagh , Hajar Nasiri , Soroush Taherkhani , Peiman Brouki Milan
{"title":"Comparison of two hemostatic skin adhesive dressings, incorporating multi-metal bioactive glass","authors":"Melina Ghasemian ,&nbsp;Neda Alasvand ,&nbsp;Ali Samadikuchaksaraei ,&nbsp;Hajir Bahrami ,&nbsp;Mahmoud Azami ,&nbsp;Farzad Ramroudi ,&nbsp;Soheila Naderi Gharahgheshlagh ,&nbsp;Hajar Nasiri ,&nbsp;Soroush Taherkhani ,&nbsp;Peiman Brouki Milan","doi":"10.1016/j.engreg.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Current bioadhesive dressings, though potential in wound care, often exhibit inadequate adhesion and lack essential properties for optimal wound healing, such as being antibacterial, hemostatic, and angiogenic. While various scaffolds containing natural adhesive molecules such as 3,4-dihydroxyphenyl-L-alanine (DOPA) and tannic acid (TA) have been individually assessed, the comparison of adhesives containing these molecules are scarcely studied. This study addresses these limitations by developing two innovative composite hydrogel adhesives, based on DOPA and TA, which are integrated with novel multi-metal bioactive glass nanoparticles (BGNs). A comprehensive comparison of their properties was conducted to evaluate their potential in improving wound healing outcomes.</div><div>BGNs were synthesized using sol-gel approach, yielding an amorphous and porous structure. Incorporation of 10 % w/w BGNs with uniform distribution enhanced the mechanical and adhesive properties of both hydrogels, with TA-based dressings demonstrating superior performance. While both dressings demonstrated biocompatibility and hemocompatibility, TA-based adhesive outperformed DOPA-based adhesive in cell viability and antibacterial activity against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>, while DOPA-based composites showed better <em>in vitro</em> angiogenic and hemostatic capabilities.</div><div>Regarding <em>in vivo</em> investigations, conducted on mice model of full-thickness skin wounds, DOPA- incorporated adhesive dressing which contained 10 % BGN exhibited slightly superior performance in re-epithelialization, collagen formation and blood vessel density, indicating its potential for acute wound healing applications.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"6 ","pages":"Pages 54-73"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138124000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Current bioadhesive dressings, though potential in wound care, often exhibit inadequate adhesion and lack essential properties for optimal wound healing, such as being antibacterial, hemostatic, and angiogenic. While various scaffolds containing natural adhesive molecules such as 3,4-dihydroxyphenyl-L-alanine (DOPA) and tannic acid (TA) have been individually assessed, the comparison of adhesives containing these molecules are scarcely studied. This study addresses these limitations by developing two innovative composite hydrogel adhesives, based on DOPA and TA, which are integrated with novel multi-metal bioactive glass nanoparticles (BGNs). A comprehensive comparison of their properties was conducted to evaluate their potential in improving wound healing outcomes.
BGNs were synthesized using sol-gel approach, yielding an amorphous and porous structure. Incorporation of 10 % w/w BGNs with uniform distribution enhanced the mechanical and adhesive properties of both hydrogels, with TA-based dressings demonstrating superior performance. While both dressings demonstrated biocompatibility and hemocompatibility, TA-based adhesive outperformed DOPA-based adhesive in cell viability and antibacterial activity against Staphylococcus aureus and Escherichia coli, while DOPA-based composites showed better in vitro angiogenic and hemostatic capabilities.
Regarding in vivo investigations, conducted on mice model of full-thickness skin wounds, DOPA- incorporated adhesive dressing which contained 10 % BGN exhibited slightly superior performance in re-epithelialization, collagen formation and blood vessel density, indicating its potential for acute wound healing applications.

Abstract Image

Abstract Image

两种含有多金属生物活性玻璃的止血皮肤粘合敷料的比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信