Seyed Ehsan Hosseini , Amin Deyranlou , Pouyan Talebizadehsardari , Hayder I. Mohammed , Amir Keshmiri
{"title":"Developing a numerical framework to study the cavitation and non-cavitation behaviour of a centrifugal pump inducer","authors":"Seyed Ehsan Hosseini , Amin Deyranlou , Pouyan Talebizadehsardari , Hayder I. Mohammed , Amir Keshmiri","doi":"10.1016/j.ijnaoe.2024.100606","DOIUrl":null,"url":null,"abstract":"<div><p>The present work explores the impact of tip clearance on the mean blade height ratio, inlet tip blade angle, and surface roughness of the inducer. The objective is to find an optimized inducer to limit the secondary flow over the blades, which in turn improves the pump efficiency and reduces the life cycle costs. A numerical framework is developed to investigate efficient operational and geometrical parameters on an inducer's cavitation and non-cavitation presentations. The catalyser functioning is simulated by applying a 3D CFD model, and the results are assessed against empirical data. The results show a reliable agreement with empirical data and suggest that the increment of tip clearance in the mean blade height ratio causes the hydraulic performance and the analytical cavitation number to decline in cavitation and non-cavitation conditions. Moreover, the optimum value of 85<sup>o</sup> is found for the inlet tip blade angle, which improves the non-cavitation performance.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100606"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000256/pdfft?md5=d5a684efb7142bdca349f10f4677632f&pid=1-s2.0-S2092678224000256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000256","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
The present work explores the impact of tip clearance on the mean blade height ratio, inlet tip blade angle, and surface roughness of the inducer. The objective is to find an optimized inducer to limit the secondary flow over the blades, which in turn improves the pump efficiency and reduces the life cycle costs. A numerical framework is developed to investigate efficient operational and geometrical parameters on an inducer's cavitation and non-cavitation presentations. The catalyser functioning is simulated by applying a 3D CFD model, and the results are assessed against empirical data. The results show a reliable agreement with empirical data and suggest that the increment of tip clearance in the mean blade height ratio causes the hydraulic performance and the analytical cavitation number to decline in cavitation and non-cavitation conditions. Moreover, the optimum value of 85o is found for the inlet tip blade angle, which improves the non-cavitation performance.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.