Learning multi-granularity decision implication in correlative data from a logical perspective

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaoxia Zhang , Yanhui Zhai , Deyu Li , Chao Zhang
{"title":"Learning multi-granularity decision implication in correlative data from a logical perspective","authors":"Shaoxia Zhang ,&nbsp;Yanhui Zhai ,&nbsp;Deyu Li ,&nbsp;Chao Zhang","doi":"10.1016/j.ijar.2024.109250","DOIUrl":null,"url":null,"abstract":"<div><p>Formal Concept Analysis (FCA) is a method rooted in order theory, with the aim of analyzing and visually representing concepts. Decision implication serves as a fundamental means of knowledge representation in FCA in the case of decision-making. This paper extends the scope of knowledge discovery within FCA in single domains to the realm of multi-domains, with introducing a framework for knowledge representation and reasoning within correlative data from the perspectives of cross-domain and multi-granularity. Firstly, we delve into the acquisition and modeling of decision knowledge within correlative data, and introduce the concept of multi-granularity decision implication. We then establish multi-granularity decision implication logic to study the completeness, non-redundancy and optimality of multi-granularity decision implications and introduce inference rules with semantical compatibility. Furthermore, we define lattice fusion decision context to seamlessly integrate information within correlative data and construct a multi-granularity decision implication basis (MGDIB) based on lattice fusion decision context. Finally, we conduct an experiment of generating MGDIB based on GroupLens_MovieLens dataset.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"173 ","pages":"Article 109250"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001373","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Formal Concept Analysis (FCA) is a method rooted in order theory, with the aim of analyzing and visually representing concepts. Decision implication serves as a fundamental means of knowledge representation in FCA in the case of decision-making. This paper extends the scope of knowledge discovery within FCA in single domains to the realm of multi-domains, with introducing a framework for knowledge representation and reasoning within correlative data from the perspectives of cross-domain and multi-granularity. Firstly, we delve into the acquisition and modeling of decision knowledge within correlative data, and introduce the concept of multi-granularity decision implication. We then establish multi-granularity decision implication logic to study the completeness, non-redundancy and optimality of multi-granularity decision implications and introduce inference rules with semantical compatibility. Furthermore, we define lattice fusion decision context to seamlessly integrate information within correlative data and construct a multi-granularity decision implication basis (MGDIB) based on lattice fusion decision context. Finally, we conduct an experiment of generating MGDIB based on GroupLens_MovieLens dataset.

从逻辑角度学习关联数据中的多粒度决策含义
形式概念分析(FCA)是一种植根于秩序理论的方法,旨在分析和直观地表示概念。在 FCA 中,决策蕴涵是决策知识表征的基本手段。本文从跨领域和多粒度的角度出发,介绍了在关联数据中进行知识表征和推理的框架,将单领域 FCA 中的知识发现扩展到了多领域领域。首先,我们深入探讨了关联数据中决策知识的获取和建模,并引入了多粒度决策蕴涵的概念。然后,我们建立了多粒度决策蕴涵逻辑,研究了多粒度决策蕴涵的完备性、非冗余性和最优性,并引入了具有语义兼容性的推理规则。此外,我们定义了网格融合决策上下文,以无缝整合相关数据中的信息,并构建了基于网格融合决策上下文的多粒度决策蕴涵基础(MGDIB)。最后,我们基于 GroupLens_MovieLens 数据集进行了生成 MGDIB 的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信