Manuel Jesús-Azabal, José García-Alonso, Jaime Galán-Jiménez
{"title":"Evaluating the quality of service of Opportunistic Mobile Ad Hoc Network routing algorithms on real devices: A software-driven approach","authors":"Manuel Jesús-Azabal, José García-Alonso, Jaime Galán-Jiménez","doi":"10.1016/j.adhoc.2024.103591","DOIUrl":null,"url":null,"abstract":"<div><p>Opportunistic Mobile Ad Hoc Networks (MANETs) offer versatile solutions in contexts where the Internet is unavailable. These networks facilitate the transmission between endpoints using a store-carry-forward strategy, thereby allowing information to be stored during periods of disconnection. Consequently, selecting the next hop in the routing process becomes a significant challenge for nodes, particularly because of its impact on Quality of Service (QoS). Therefore, routing strategies are crucial in opportunistic MANETs; however, their deployment and evaluation in real scenarios can be challenging. In response to this context, this paper introduces a monitoring software-driven tool designed to evaluate the QoS of routing algorithms in physical opportunistic MANETs. The implementation and its components are detailed, along with a case study and the outcomes provided by an implementation of the proposed solution. The results demonstrate the effectiveness of the implementation in enabling the analysis of routing protocols in real scenarios, highlighting significant differences with simulation results: mobility patterns in simulations tend to be inaccurate and overly optimistic, leading to a higher delivery probability and lower latency than what is observed in the real testbed.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570870524002026/pdfft?md5=b5858b4584b1baf264ed6cb852f8b0d1&pid=1-s2.0-S1570870524002026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002026","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Opportunistic Mobile Ad Hoc Networks (MANETs) offer versatile solutions in contexts where the Internet is unavailable. These networks facilitate the transmission between endpoints using a store-carry-forward strategy, thereby allowing information to be stored during periods of disconnection. Consequently, selecting the next hop in the routing process becomes a significant challenge for nodes, particularly because of its impact on Quality of Service (QoS). Therefore, routing strategies are crucial in opportunistic MANETs; however, their deployment and evaluation in real scenarios can be challenging. In response to this context, this paper introduces a monitoring software-driven tool designed to evaluate the QoS of routing algorithms in physical opportunistic MANETs. The implementation and its components are detailed, along with a case study and the outcomes provided by an implementation of the proposed solution. The results demonstrate the effectiveness of the implementation in enabling the analysis of routing protocols in real scenarios, highlighting significant differences with simulation results: mobility patterns in simulations tend to be inaccurate and overly optimistic, leading to a higher delivery probability and lower latency than what is observed in the real testbed.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.