Victoria J. Armer , Erika Kroll , Martin Darino , Daniel P. Smith , Martin Urban , Kim E. Hammond-Kosack
{"title":"Navigating the Fusarium species complex: Host-range plasticity and genome variations","authors":"Victoria J. Armer , Erika Kroll , Martin Darino , Daniel P. Smith , Martin Urban , Kim E. Hammond-Kosack","doi":"10.1016/j.funbio.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>The Ascomycete genus <em>Fusarium</em><em>,</em> first introduced by Link in 1809, currently consists of 431 species and 3558 unclassified isolates and hybrids (according to NCBI Taxonomy lists). Collectively, these fungi have diverse lifestyles and infection cycles exploiting a wide range of environments, hosts, ecological niches, and nutrient sources. Here, we carried out a pan-<em>Fusarium</em> species review to describe and explore the glamorous, and the less attractive niches, exploited by pathogenic and endophytic species. We survey species that infect plant, human, animal and/or invertebrate hosts, free-living non-pathogenic species dwelling in land, air or water-based natural ecosystems, through to those species that exploit human-modified environments or are cultivated in industrial production systems. Fully sequenced, assembled and annotated reference genomes are already available for 189 <em>Fusarium</em> species, many at chromosome scale. In addition, for some of the world's most important species extensive single species pangenomes or closely related <em>formae speciales</em> genome clusters are readily available. Previous comparative genomics studies have focussed on taxonomically restricted clusters of <em>Fusarium</em> species. We now investigate potential new relationships between these vastly contrasting <em>Fusarium</em> biologies, niches and environmental occupancies and the evolution of their respective genomes.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"128 8","pages":"Pages 2439-2459"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624000886","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Ascomycete genus Fusarium, first introduced by Link in 1809, currently consists of 431 species and 3558 unclassified isolates and hybrids (according to NCBI Taxonomy lists). Collectively, these fungi have diverse lifestyles and infection cycles exploiting a wide range of environments, hosts, ecological niches, and nutrient sources. Here, we carried out a pan-Fusarium species review to describe and explore the glamorous, and the less attractive niches, exploited by pathogenic and endophytic species. We survey species that infect plant, human, animal and/or invertebrate hosts, free-living non-pathogenic species dwelling in land, air or water-based natural ecosystems, through to those species that exploit human-modified environments or are cultivated in industrial production systems. Fully sequenced, assembled and annotated reference genomes are already available for 189 Fusarium species, many at chromosome scale. In addition, for some of the world's most important species extensive single species pangenomes or closely related formae speciales genome clusters are readily available. Previous comparative genomics studies have focussed on taxonomically restricted clusters of Fusarium species. We now investigate potential new relationships between these vastly contrasting Fusarium biologies, niches and environmental occupancies and the evolution of their respective genomes.
期刊介绍:
Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.