{"title":"On directional blow-up for a semilinear heat equation with space-dependent reaction","authors":"Ryuichi Suzuki , Noriaki Umeda","doi":"10.1016/j.jfa.2024.110567","DOIUrl":null,"url":null,"abstract":"<div><p>We consider nonnegative solutions <em>u</em> of the Cauchy problem for a semilinear heat equation with space-dependent reaction: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <span><math><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>0</mn></math></span> satisfies some condition and the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mo>(</mo><mo>≢</mo><mn>0</mn><mo>)</mo></math></span> satisfies <span><math><msub><mrow><mo>‖</mo><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></msub><mo><</mo><mo>∞</mo></math></span> with <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. We study weighted solutions <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mi>u</mi></math></span> which blow up at minimal blow-up time. Such a weighted solution blows up at space infinity in some direction (directional blow-up). We call this direction a <em>blow-up direction</em> of <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mi>u</mi></math></span>. We give a sufficient and necessary condition on <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for a weighted solution to blow up at minimal blow-up time. Moreover, we completely characterize blow-up directions of <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mi>u</mi></math></span> by the profile of the initial data.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002556","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider nonnegative solutions u of the Cauchy problem for a semilinear heat equation with space-dependent reaction: , , where satisfies some condition and the initial data satisfies with . We study weighted solutions which blow up at minimal blow-up time. Such a weighted solution blows up at space infinity in some direction (directional blow-up). We call this direction a blow-up direction of . We give a sufficient and necessary condition on for a weighted solution to blow up at minimal blow-up time. Moreover, we completely characterize blow-up directions of by the profile of the initial data.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis