On directional blow-up for a semilinear heat equation with space-dependent reaction

IF 1.7 2区 数学 Q1 MATHEMATICS
Ryuichi Suzuki , Noriaki Umeda
{"title":"On directional blow-up for a semilinear heat equation with space-dependent reaction","authors":"Ryuichi Suzuki ,&nbsp;Noriaki Umeda","doi":"10.1016/j.jfa.2024.110567","DOIUrl":null,"url":null,"abstract":"<div><p>We consider nonnegative solutions <em>u</em> of the Cauchy problem for a semilinear heat equation with space-dependent reaction: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <span><math><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>0</mn></math></span> satisfies some condition and the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mo>(</mo><mo>≢</mo><mn>0</mn><mo>)</mo></math></span> satisfies <span><math><msub><mrow><mo>‖</mo><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></msub><mo>&lt;</mo><mo>∞</mo></math></span> with <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. We study weighted solutions <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mi>u</mi></math></span> which blow up at minimal blow-up time. Such a weighted solution blows up at space infinity in some direction (directional blow-up). We call this direction a <em>blow-up direction</em> of <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mi>u</mi></math></span>. We give a sufficient and necessary condition on <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for a weighted solution to blow up at minimal blow-up time. Moreover, we completely characterize blow-up directions of <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mi>u</mi></math></span> by the profile of the initial data.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002556","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider nonnegative solutions u of the Cauchy problem for a semilinear heat equation with space-dependent reaction: ut=Δu+μ(x)up, u(x,0)=u0(x), where μ(x)0 satisfies some condition and the initial data u0(x)(0) satisfies μ˜u0L(RN)< with μ˜=μ1/(p1). We study weighted solutions μ˜u which blow up at minimal blow-up time. Such a weighted solution blows up at space infinity in some direction (directional blow-up). We call this direction a blow-up direction of μ˜u. We give a sufficient and necessary condition on u0 for a weighted solution to blow up at minimal blow-up time. Moreover, we completely characterize blow-up directions of μ˜u by the profile of the initial data.

关于具有空间反应的半线性热方程的定向膨胀问题
我们考虑一个半线性热方程的考奇问题的非负解 u,该方程的反应与空间有关:ut=Δu+μ(x)up,u(x,0)=u0(x),其中μ(x)≥0 满足某些条件,初始数据 u0(x)(≢0)满足‖μ˜u0‖L∞(RN)<∞,μ˜=μ1/(p-1)。我们研究的加权解 "μ˜u "会在最小爆破时间内爆破。这样的加权解会在空间无穷大的某个方向炸毁(定向炸毁)。我们称这个方向为 μ˜u 的炸毁方向。我们给出了加权解在最小炸毁时间内炸毁 u0 的充分必要条件。此外,我们通过初始数据的轮廓完全描述了 μ˜u 的炸毁方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信