Zn-doped aerogel for Ni2+ adsorption (Zn-A-Ni) and reuse of Zn-A-Ni to create Zn, Ni-co-doped carbon aerogel for applications in adsorption and energy storage
Nguyen Huu Hieu , Phan Minh Tu , Nguyen Hoang Kim Duyen , Cao Vu Lam , Dang Ngoc Chau Vy , Ta Dang Khoa , Nguyen Truong Son , Vo Nguyen Dai Viet , Pham Trong Liem Chau
{"title":"Zn-doped aerogel for Ni2+ adsorption (Zn-A-Ni) and reuse of Zn-A-Ni to create Zn, Ni-co-doped carbon aerogel for applications in adsorption and energy storage","authors":"Nguyen Huu Hieu , Phan Minh Tu , Nguyen Hoang Kim Duyen , Cao Vu Lam , Dang Ngoc Chau Vy , Ta Dang Khoa , Nguyen Truong Son , Vo Nguyen Dai Viet , Pham Trong Liem Chau","doi":"10.1016/j.jiec.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><div><span>In order to solve the problem of heavy metal pollution, in this study, Zn-doped aerogel (Zn-A) was used as a material to remove Ni</span><sup>2+</sup><span> from wastewater. Zn-A was synthesized from sodium alginate and nipa palm shell-derived cellulose via the sol–gel method combined with freeze-drying. Zn-A has the ability to adsorb Ni</span><sup>2+</sup> up to 194.2 mg/g (Zn-A-Ni). After adsorbing Ni<sup>2+</sup><span>, Zn-A-Ni was pyrolyzed to form Zn, Ni-co-doped carbon aerogel<span> (Zn-CA-Ni), which has high potential for manufacturing electrodes in supercapacitors (specific capacitance reaches 124.0F/g) and crystal violet treatment (adsorption capacity reaches 38.7 mg/g). Furthermore, Zn-A and Zn-CA-Ni were characterized through modern methods: Scanning electron microscope, energy dispersive X-ray, Fourier-transform infrared spectroscopy, X-ray diffraction analysis, and Nitrogen adsorption–desorption isotherm. The ability to adsorb Ni</span></span><sup>2+</sup><span><span> of Zn-A and adsorb crystal violet of Zn-CA-Ni was determined through ultraviolet–visible spectroscopy measurement. In addition, the electrochemical properties of Zn-CA-Ni were also analyzed through </span>cyclic voltammetry<span>, galvanostatic charge–discharge, and electrochemical impedance spectroscopy.</span></span></div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"141 ","pages":"Pages 489-500"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24004556","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the problem of heavy metal pollution, in this study, Zn-doped aerogel (Zn-A) was used as a material to remove Ni2+ from wastewater. Zn-A was synthesized from sodium alginate and nipa palm shell-derived cellulose via the sol–gel method combined with freeze-drying. Zn-A has the ability to adsorb Ni2+ up to 194.2 mg/g (Zn-A-Ni). After adsorbing Ni2+, Zn-A-Ni was pyrolyzed to form Zn, Ni-co-doped carbon aerogel (Zn-CA-Ni), which has high potential for manufacturing electrodes in supercapacitors (specific capacitance reaches 124.0F/g) and crystal violet treatment (adsorption capacity reaches 38.7 mg/g). Furthermore, Zn-A and Zn-CA-Ni were characterized through modern methods: Scanning electron microscope, energy dispersive X-ray, Fourier-transform infrared spectroscopy, X-ray diffraction analysis, and Nitrogen adsorption–desorption isotherm. The ability to adsorb Ni2+ of Zn-A and adsorb crystal violet of Zn-CA-Ni was determined through ultraviolet–visible spectroscopy measurement. In addition, the electrochemical properties of Zn-CA-Ni were also analyzed through cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.