A sustainable bioprocess technology for producing food-flavour (+)-γ-decalactone from castor oil-derived ricinoleic acid using enzymatic activity of Candida parapsilosis: Scale-up optimization and purification using novel composite
IF 4.1 2区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"A sustainable bioprocess technology for producing food-flavour (+)-γ-decalactone from castor oil-derived ricinoleic acid using enzymatic activity of Candida parapsilosis: Scale-up optimization and purification using novel composite","authors":"Naziya Syed , Suman Singh , Shivani Chaturvedi , Prashant Kumar , Deepak Kumar , Abhinav Jain , Praveen Kumar Sharma , Ashween Deepak Nannaware , Chandan Singh Chanotiya , Rahul Bhambure , Pankaj Kumar , Alok Kalra , Prasant Kumar Rout","doi":"10.1016/j.jbiotec.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a <em>Candida parapsilosis</em> strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables—pH, cell density, amount of RA, and temperature—the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through <sup>14</sup>C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 17-30"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624001986","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a Candida parapsilosis strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables—pH, cell density, amount of RA, and temperature—the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through 14C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.