{"title":"Privacy-Preserving and Energy-Saving Random Forest-Based Disease Detection Framework for Green Internet of Things in Mobile Healthcare Networks","authors":"Sona Alex, D. Jagalchandran, Deepthi P. Pattathil","doi":"10.1109/TDSC.2023.3347342","DOIUrl":null,"url":null,"abstract":"The privacy of medical data and resource restrictions in the Internet of Things (IoT) nodes prohibit medical users from utilizing disease detection (DD) services offered by the health cloud in the mobile healthcare network (MHN). Also, health clouds may need the DD procedures to be private. Therefore, the essential requirements for MHN DD services are (i) performing accurate and fast DD without jeopardizing the privacy of health clouds and medical users and (ii) reducing the computational and transmission overhead (energy-consumption) of the green IoT devices while performing privacy-preserving DD. The outsourced privacy-preserving DD is available in the literature based on popular tree-based machine learning schemes such as a random forest. However, these schemes utilize energy-hungry public-key encryption schemes in IoT nodes at medical users for privacy preservation. This work proposes an energy-efficient, fully homomorphic modified Rivest scheme (FHMRS) for the proposed privacy-preserving random forest classification (PRFC). A secure integer comparison protocol is also developed for reducing processing time and energy consumption for users while performing outsourced PRFC. The implementation results and security analysis show that the proposed schemes guarantee better energy efficiency for MHN green IoT devices without compromising privacy than the existing tree-based schemes.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"1 5","pages":"4180-4192"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2023.3347342","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The privacy of medical data and resource restrictions in the Internet of Things (IoT) nodes prohibit medical users from utilizing disease detection (DD) services offered by the health cloud in the mobile healthcare network (MHN). Also, health clouds may need the DD procedures to be private. Therefore, the essential requirements for MHN DD services are (i) performing accurate and fast DD without jeopardizing the privacy of health clouds and medical users and (ii) reducing the computational and transmission overhead (energy-consumption) of the green IoT devices while performing privacy-preserving DD. The outsourced privacy-preserving DD is available in the literature based on popular tree-based machine learning schemes such as a random forest. However, these schemes utilize energy-hungry public-key encryption schemes in IoT nodes at medical users for privacy preservation. This work proposes an energy-efficient, fully homomorphic modified Rivest scheme (FHMRS) for the proposed privacy-preserving random forest classification (PRFC). A secure integer comparison protocol is also developed for reducing processing time and energy consumption for users while performing outsourced PRFC. The implementation results and security analysis show that the proposed schemes guarantee better energy efficiency for MHN green IoT devices without compromising privacy than the existing tree-based schemes.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.