{"title":"A Self-adapting Pixel Antenna - Substrate Lens System for Infrared Frequencies","authors":"Mustafa Shubbar, Balázs Rakos","doi":"10.3311/ppee.36820","DOIUrl":null,"url":null,"abstract":"In this work, we propose a concentrator lens - antenna arrangement, potentially suitable for infrared sensing and energy harvesting rectenna systems. The structure consists of a pixel antenna, self-adapting for the direction of the incident infrared radiation, and a concentrator lens, both optimized for the mid-infrared spectrum. The silicon substrate lens is situated above the pixel antenna, enabling the concentration of the incident light on the antenna; silicon was chosen due to its transparency in the IR spectrum. We examine how various parameters of the lens, in conjunction with the different states of the pixel antenna, affects the performance of the system. The simulations show that the gain of the arrangement increases considerably in correlation with the radius of the lens. The results suggest that the energy conversion efficiency of infrared rectenna systems can be enhanced by several orders of magnitude with the utilization of the proposed arrangement.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"21 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.36820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a concentrator lens - antenna arrangement, potentially suitable for infrared sensing and energy harvesting rectenna systems. The structure consists of a pixel antenna, self-adapting for the direction of the incident infrared radiation, and a concentrator lens, both optimized for the mid-infrared spectrum. The silicon substrate lens is situated above the pixel antenna, enabling the concentration of the incident light on the antenna; silicon was chosen due to its transparency in the IR spectrum. We examine how various parameters of the lens, in conjunction with the different states of the pixel antenna, affects the performance of the system. The simulations show that the gain of the arrangement increases considerably in correlation with the radius of the lens. The results suggest that the energy conversion efficiency of infrared rectenna systems can be enhanced by several orders of magnitude with the utilization of the proposed arrangement.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).