Tianhua Ju , Zhenlin Huang , Xueyong Ding , Xinlin Yan , Changzong Liao
{"title":"A Unified Extrapolation thermodynamic model for multicomponent solutions based on binary data","authors":"Tianhua Ju , Zhenlin Huang , Xueyong Ding , Xinlin Yan , Changzong Liao","doi":"10.1016/j.tca.2024.179824","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the thermodynamic properties of multicomponent solution based on binary data is highly desirable. However, traditional methods face many challenges in practical applications due to the unclear mechanisms for obtaining the molar composition of sub-binary terms. In this article, a new extrapolation model is suggested, which derived from the assumption of the Kohler model. It determines the molar composition points of each sub-binary system through a clear mechanism by introducing the contribution coefficient, defined by the property differences between two components. Moreover, the new model can mathematically obtain all potential molar composition points of sub-binary systems. Additionally, a simple and effective method for calculating the property difference between two components is recommended. The performance of this new extrapolation model is demonstrated in several multicomponent alloy systems with different properties.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179824"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001631","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting the thermodynamic properties of multicomponent solution based on binary data is highly desirable. However, traditional methods face many challenges in practical applications due to the unclear mechanisms for obtaining the molar composition of sub-binary terms. In this article, a new extrapolation model is suggested, which derived from the assumption of the Kohler model. It determines the molar composition points of each sub-binary system through a clear mechanism by introducing the contribution coefficient, defined by the property differences between two components. Moreover, the new model can mathematically obtain all potential molar composition points of sub-binary systems. Additionally, a simple and effective method for calculating the property difference between two components is recommended. The performance of this new extrapolation model is demonstrated in several multicomponent alloy systems with different properties.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes