Quasi-Bach flow and quasi-Bach solitons on Riemannian manifolds

IF 1.6 3区 数学 Q1 MATHEMATICS
Naeem Ahmad Pundeer , Hemangi Madhusudan Shah , Arindam Bhattacharyya
{"title":"Quasi-Bach flow and quasi-Bach solitons on Riemannian manifolds","authors":"Naeem Ahmad Pundeer ,&nbsp;Hemangi Madhusudan Shah ,&nbsp;Arindam Bhattacharyya","doi":"10.1016/j.geomphys.2024.105278","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we <em>introduce</em> quasi-Bach tensor and correspondingly <em>introduce</em> almost quasi-Bach solitons, thereby generalizing the existing notion of Bach tensor and almost Bach solitons. We explore some properties of gradient quasi Bach solitons with harmonic Weyl curvature tensor. We study the relationships between Weyl tensor, Cotton tensor, tensor <span><math><mi>D</mi></math></span> introduced by Cao, and quasi Bach tensor. We also find the evolution of volume, Einstein metric, Ricci curvature and scalar curvature, under the quasi Bach flow. Our results obtained here extends the results of Bach solitons and Bach flow. Finally, we obtain the characterization of gradient quasi-Bach soliton of type I, a particular quasi Bach soliton, on the product manifolds <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Our exploration generalizes gradient Bach soliton on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> obtained by P. T. Ho, while the gradient soliton on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a novel one and is complementary to the results obtained by P. T. Ho.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001797","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce quasi-Bach tensor and correspondingly introduce almost quasi-Bach solitons, thereby generalizing the existing notion of Bach tensor and almost Bach solitons. We explore some properties of gradient quasi Bach solitons with harmonic Weyl curvature tensor. We study the relationships between Weyl tensor, Cotton tensor, tensor D introduced by Cao, and quasi Bach tensor. We also find the evolution of volume, Einstein metric, Ricci curvature and scalar curvature, under the quasi Bach flow. Our results obtained here extends the results of Bach solitons and Bach flow. Finally, we obtain the characterization of gradient quasi-Bach soliton of type I, a particular quasi Bach soliton, on the product manifolds S2×H2 and R2×H2. Our exploration generalizes gradient Bach soliton on R2×H2 obtained by P. T. Ho, while the gradient soliton on S2×H2 is a novel one and is complementary to the results obtained by P. T. Ho.

黎曼流形上的准巴赫流和准巴赫孤子
在本文中,我们引入了准巴赫张量,并相应地引入了近似准巴赫孤子,从而推广了现有的巴赫张量和近似巴赫孤子的概念。我们探讨了具有谐波韦尔曲率张量的梯度准巴赫孤子的一些性质。我们研究了韦尔张量、科顿张量、曹文轩引入的张量 D 和准巴赫张量之间的关系。我们还发现了在准巴赫流下体积、爱因斯坦度量、利玛窦曲率和标量曲率的演变。我们在此获得的结果扩展了巴赫孤子和巴赫流的结果。最后,我们在乘积流形 S2×H2 和 R2×H2 上得到了梯度准巴赫孤子 I 型的特征,它是一种特殊的准巴赫孤子。我们的探索概括了何沛德在 R2×H2 上得到的梯度巴赫孤子,而 S2×H2 上的梯度孤子是一个新发现,是对何沛德研究成果的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信