Wenqing Su, Ji Tan, Zhaoshui He, Zhijie Lin, Chang Liu
{"title":"Handheld structured light system for panoramic 3D measurement in mesoscale","authors":"Wenqing Su, Ji Tan, Zhaoshui He, Zhijie Lin, Chang Liu","doi":"10.1088/1361-6501/ad5de2","DOIUrl":null,"url":null,"abstract":"\n The measurement of complete 3D topography in mesoscale plays a vital role in high-precision reverse engineering, oral medical modeling, circuit detection, etc. Traditional structured light systems are limited to measuring 3D shapes from a single perspective. How to achieve high-quality mesoscopic panoramic 3D measurement remains challenging, especially in complex measured scenarios such as dynamic measurement, scattering medium, and high reflectance. To overcome these problems, we develop a handheld mesoscopic panoramic 3D measurement system for such complex scenes together with the fast point-cloud-registration and accurate 3D-reconstruction, where a motion discrimination mechanism is designed to ensure that the captured fringe is in a quasi-stationary case by avoiding the motion errors caused during fringe scanning; a deep neural network is utilized to suppressing the fringe-degradation caused by scattering mediums resulting to significantly improves the quality of the 3D point cloud; a strategy based on phase averaging is additionally proposed to simultaneously correct the saturation-induced errors and gamma nonlinear errors. Finally, the proposed system with a multi-threaded data processing framework is further developed to verify the proposed method and the corresponding experiments verify its feasibility.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"42 12","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad5de2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement of complete 3D topography in mesoscale plays a vital role in high-precision reverse engineering, oral medical modeling, circuit detection, etc. Traditional structured light systems are limited to measuring 3D shapes from a single perspective. How to achieve high-quality mesoscopic panoramic 3D measurement remains challenging, especially in complex measured scenarios such as dynamic measurement, scattering medium, and high reflectance. To overcome these problems, we develop a handheld mesoscopic panoramic 3D measurement system for such complex scenes together with the fast point-cloud-registration and accurate 3D-reconstruction, where a motion discrimination mechanism is designed to ensure that the captured fringe is in a quasi-stationary case by avoiding the motion errors caused during fringe scanning; a deep neural network is utilized to suppressing the fringe-degradation caused by scattering mediums resulting to significantly improves the quality of the 3D point cloud; a strategy based on phase averaging is additionally proposed to simultaneously correct the saturation-induced errors and gamma nonlinear errors. Finally, the proposed system with a multi-threaded data processing framework is further developed to verify the proposed method and the corresponding experiments verify its feasibility.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.