{"title":"OMS-SLAM: Dynamic Scene Visual SLAM Based on Object Detection with Multiple Geometric Feature Constraints and Statistical Threshold Segmentation","authors":"Jialiang Tang, Zhengyong Feng, Peng Liao, Liheng Chen, Xiaomei Xiao","doi":"10.1088/1361-6501/ad5de5","DOIUrl":null,"url":null,"abstract":"\n SLAM technology is crucial to robot navigation. Despite the good performance of traditional SLAM algorithms in static environments, dynamic objects typically exist in realistic operating environments. These objects can lead to misassociated features, which in turn considerably impact the system’s localization accuracy and robustness. To better address this challenge, we have proposed the OMS-SLAM. In OMS-SLAM, we adopted the YOLOv8 target detection network to extract object information from environment and designed a dynamic probability propagation model that is coupled with target detection and multiple geometric constrains to determine the dynamic objects in the environment. For the identified dynamic objects, we have designed a foreground image segmentation algorithm based on depth image histogram statistics to extract the object contours and eliminate the feature points within these contours. We then use the GMS (Grid-based Motion Statistics) matching pair as the filtering strategy to enhance the quality of the feature points and use the enhanced feature points for tracking. This combined method can accurately identify dynamic objects and extract related feature points, significantly reducing its interference and consequently enhancing the system's robustness and localization accuracy. We also built static dense point cloud maps to support advanced tasks of robots. Finally, through testing on the high-speed dataset of TUM RGB-D, it was found that the root mean square error of the Absolute Trajectory Error (ATE) in this study decreased by an average of 97.10%, compared to ORB-SLAM2. Moreover, tests in real-world scenarios also confirmed the effectiveness of the OMS-SLAM algorithm in dynamic environments.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad5de5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SLAM technology is crucial to robot navigation. Despite the good performance of traditional SLAM algorithms in static environments, dynamic objects typically exist in realistic operating environments. These objects can lead to misassociated features, which in turn considerably impact the system’s localization accuracy and robustness. To better address this challenge, we have proposed the OMS-SLAM. In OMS-SLAM, we adopted the YOLOv8 target detection network to extract object information from environment and designed a dynamic probability propagation model that is coupled with target detection and multiple geometric constrains to determine the dynamic objects in the environment. For the identified dynamic objects, we have designed a foreground image segmentation algorithm based on depth image histogram statistics to extract the object contours and eliminate the feature points within these contours. We then use the GMS (Grid-based Motion Statistics) matching pair as the filtering strategy to enhance the quality of the feature points and use the enhanced feature points for tracking. This combined method can accurately identify dynamic objects and extract related feature points, significantly reducing its interference and consequently enhancing the system's robustness and localization accuracy. We also built static dense point cloud maps to support advanced tasks of robots. Finally, through testing on the high-speed dataset of TUM RGB-D, it was found that the root mean square error of the Absolute Trajectory Error (ATE) in this study decreased by an average of 97.10%, compared to ORB-SLAM2. Moreover, tests in real-world scenarios also confirmed the effectiveness of the OMS-SLAM algorithm in dynamic environments.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.