{"title":"Enhancing Computational Efficiency in Porous Media Analysis: Integrating Machine Learning with Monte Carlo Ray Tracing","authors":"Farhin Tabassum, S. Hajimirza","doi":"10.1115/1.4065895","DOIUrl":null,"url":null,"abstract":"\n Monte Carlo ray tracing (MCRT) has been a widely implemented and reliable computational method for calculating light-matter interaction in porous media, the computational modeling of porous media and performing MCRT becomes significantly expensive when dealing with intricate structures and numerous dependent variables. Hence, Machine Learning (ML) models have been utilized to overcome computational burdens. In this study, we investigate two distinct frameworks for characterizing radiative properties in porous media for pack-free and packing-based methods. We employ two different regression tools for each case, namely Gaussian process regressions for pack-free MCRT and Convolutional Neural Network (CNN) models for pack-based MCRT to predict the radiative properties. Our study highlights the importance of selecting the appropriate regression method based on the physical model, which can lead to significant computational efficiency improvement. Our results show that both models can predict the radiative properties with high accuracy (>90%). Furthermore, we demonstrate that combining MCRT with ML inference not only enhances predictive accuracy but also reduces the computational cost of simulation by more than 96% using the GP model and 99% for the CNN model.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065895","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monte Carlo ray tracing (MCRT) has been a widely implemented and reliable computational method for calculating light-matter interaction in porous media, the computational modeling of porous media and performing MCRT becomes significantly expensive when dealing with intricate structures and numerous dependent variables. Hence, Machine Learning (ML) models have been utilized to overcome computational burdens. In this study, we investigate two distinct frameworks for characterizing radiative properties in porous media for pack-free and packing-based methods. We employ two different regression tools for each case, namely Gaussian process regressions for pack-free MCRT and Convolutional Neural Network (CNN) models for pack-based MCRT to predict the radiative properties. Our study highlights the importance of selecting the appropriate regression method based on the physical model, which can lead to significant computational efficiency improvement. Our results show that both models can predict the radiative properties with high accuracy (>90%). Furthermore, we demonstrate that combining MCRT with ML inference not only enhances predictive accuracy but also reduces the computational cost of simulation by more than 96% using the GP model and 99% for the CNN model.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems