Sebastian A. Sanden, Mathias Smialkowski, Sabrina Y. Hu, Nevil Suvagiya, Steven Angel, Christof Schulz, Ulf-Peter Apfel
{"title":"Ternary Pentlandites as Hydrogen Evolution Catalysts in Alkaline Media","authors":"Sebastian A. Sanden, Mathias Smialkowski, Sabrina Y. Hu, Nevil Suvagiya, Steven Angel, Christof Schulz, Ulf-Peter Apfel","doi":"10.1002/aesr.202400128","DOIUrl":null,"url":null,"abstract":"<p>Metal sulfides are promising alternatives to noble metal electrocatalysts for water-based hydrogen evolution. Pentlandites, notably, exhibit high activity in acidic environments. To explore their potential in alkaline conditions, pentlandite electrodes are tested in both conventional three-electrode setups and scaled up to a 12.6 cm<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$^{2}$</annotation>\n </semantics></math> membrane electrode assembly (MEA). Optimized pentlandites with a stochiometry of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>9</mn>\n </msub>\n <msub>\n <mi>S</mi>\n <mn>8</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{M}\\right)_{9} \\left(\\text{S}\\right)_{8}$</annotation>\n </semantics></math>, containing Fe, Ni, and Co, show reduced overpotentials for hydrogen evolution with higher Fe and Ni contents. However, a minimum Co content of three equivalents is necessary for peak hydrogen evolution reaction activity with −0.40 V versus reversible hydrogen electrode at −300 mA cm<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$^{- 2}$</annotation>\n </semantics></math>. Stability assessments via X-ray photoelectron and Raman spectroscopy reveal minor surface changes for Fe and Ni species but significant leaching of cobalt from Co<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>4.5</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$_{4.5}$</annotation>\n </semantics></math>Ni<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>4.5</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$_{4.5}$</annotation>\n </semantics></math>S<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>8</mn>\n </msub>\n </mrow>\n <annotation>$_{8}$</annotation>\n </semantics></math> surfaces postelectrolysis. Selected pentlandite catalysts are integrated into MEAs, with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Fe</mtext>\n </mrow>\n <mn>4</mn>\n </msub>\n <msub>\n <mrow>\n <mtext>Co</mtext>\n </mrow>\n <mn>3</mn>\n </msub>\n <msub>\n <mrow>\n <mtext>Ni</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>S</mi>\n <mn>8</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Fe}\\right)_{4} \\left(\\text{Co}\\right)_{3} \\left(\\text{Ni}\\right)_{2} \\left(\\text{S}\\right)_{8}$</annotation>\n </semantics></math> achieving 1 A cm<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$^{- 2}$</annotation>\n </semantics></math> at 2.2 V with minimal potential decay of 50 μV h<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$^{- 1}$</annotation>\n </semantics></math> alongside a La<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>0.8</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$_{0.8}$</annotation>\n </semantics></math>Sr<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>0.2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$_{0.2}$</annotation>\n </semantics></math>CoO<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$_{3}$</annotation>\n </semantics></math> anode. These findings underscore the suitability of pentlandite catalysts for water splitting at industrial scales under alkaline conditions.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400128","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Metal sulfides are promising alternatives to noble metal electrocatalysts for water-based hydrogen evolution. Pentlandites, notably, exhibit high activity in acidic environments. To explore their potential in alkaline conditions, pentlandite electrodes are tested in both conventional three-electrode setups and scaled up to a 12.6 cm membrane electrode assembly (MEA). Optimized pentlandites with a stochiometry of , containing Fe, Ni, and Co, show reduced overpotentials for hydrogen evolution with higher Fe and Ni contents. However, a minimum Co content of three equivalents is necessary for peak hydrogen evolution reaction activity with −0.40 V versus reversible hydrogen electrode at −300 mA cm. Stability assessments via X-ray photoelectron and Raman spectroscopy reveal minor surface changes for Fe and Ni species but significant leaching of cobalt from CoNiS surfaces postelectrolysis. Selected pentlandite catalysts are integrated into MEAs, with achieving 1 A cm at 2.2 V with minimal potential decay of 50 μV h alongside a LaSrCoO anode. These findings underscore the suitability of pentlandite catalysts for water splitting at industrial scales under alkaline conditions.
金属硫化物是贵金属电催化剂的理想替代品,可用于水基氢进化。特别是,彭兰特石在酸性环境中表现出很高的活性。为了探索其在碱性条件下的潜力,我们在传统的三电极设置和放大到 12.6 厘米的膜电极组件(MEA)中对彭兰石电极进行了测试。优化后的戊兰特含有铁、镍和钴,其化学计量学结果为:铁和镍含量越高,氢演化的过电位越低。然而,要在 -300 mA cm 条件下达到-0.40 V 相对于可逆氢电极的氢进化反应活性峰值,Co 的最低含量必须达到三个当量。通过 X 射线光电子学和拉曼光谱进行的稳定性评估显示,铁和镍的表面变化很小,但电解后 CoNiS 表面的钴浸出量很大。选定的戊兰特催化剂被集成到 MEA 中,与 LaSrCoO 阳极一起在 2.2 V 时达到 1 A cm,电位衰减最小,为 50 μV h。这些研究结果表明,在碱性条件下,戊兰特催化剂适用于工业规模的水分离。
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).