{"title":"Vi-AbSQA: Multi-task Prompt Instruction Tuning Model for Vietnamese Aspect-based Sentiment Quadruple Analysis","authors":"T. Dang, D. Hao, Ngan Nguyen","doi":"10.1145/3676886","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis (ABSA) has recently received considerable attention within the Natural Language Processing (NLP) community, especially for complex tasks like triplet extraction or quadruplet prediction. However, most existing studies focus on high-resource languages. In this paper, we construct a challenging benchmark dataset for Vietnamese Aspect-based Sentiment Quadruple Analysis (AbSQA), where each sentence can contain explicit and implicit aspects and opinion terms. Moreover, each sample includes at least two aspect categories with different sentiments. We release this dataset for free research purposes, believing it will push forward research in this field. In addition, we present a generative-based approach to address the AbSQA task using a multitask instruction prompt tuning framework. Specifically, we design an effective generation paradigm that leverages instruction prompts to provide more information about the task. Besides, our model leverages relational information by designing separate sub-tasks based on the quadruplet elements and fine-tunes the transformer-based pretrained generative models in a multi-task manner. The experimental results demonstrate that our approach outperforms previously established extraction-based and generative-based methods, as well as the baseline variants.","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3676886","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Aspect-based sentiment analysis (ABSA) has recently received considerable attention within the Natural Language Processing (NLP) community, especially for complex tasks like triplet extraction or quadruplet prediction. However, most existing studies focus on high-resource languages. In this paper, we construct a challenging benchmark dataset for Vietnamese Aspect-based Sentiment Quadruple Analysis (AbSQA), where each sentence can contain explicit and implicit aspects and opinion terms. Moreover, each sample includes at least two aspect categories with different sentiments. We release this dataset for free research purposes, believing it will push forward research in this field. In addition, we present a generative-based approach to address the AbSQA task using a multitask instruction prompt tuning framework. Specifically, we design an effective generation paradigm that leverages instruction prompts to provide more information about the task. Besides, our model leverages relational information by designing separate sub-tasks based on the quadruplet elements and fine-tunes the transformer-based pretrained generative models in a multi-task manner. The experimental results demonstrate that our approach outperforms previously established extraction-based and generative-based methods, as well as the baseline variants.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.