Largest hyperbolic action of 3-manifold groups

IF 0.8 3区 数学 Q2 MATHEMATICS
Carolyn Abbott, Hoang Thanh Nguyen, Alexander J. Rasmussen
{"title":"Largest hyperbolic action of 3-manifold groups","authors":"Carolyn Abbott,&nbsp;Hoang Thanh Nguyen,&nbsp;Alexander J. Rasmussen","doi":"10.1112/blms.13118","DOIUrl":null,"url":null,"abstract":"<p>The set of equivalence classes of cobounded actions of a group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> on different hyperbolic metric spaces carries a natural partial order. Following Abbott–Balasubramanya–Osin, the group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$\\mathcal {H}$</annotation>\n </semantics></math>-<i>accessible</i> if the resulting poset has a largest element. In this paper, we prove that every nongeometric 3-manifold has a finite cover with <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$\\mathcal {H}$</annotation>\n </semantics></math>-inaccessible fundamental group and give conditions under which the fundamental group of the original manifold is <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$\\mathcal {H}$</annotation>\n </semantics></math>-inaccessible. We also prove that every Croke–Kleiner admissible group (a class of graphs of groups that generalizes fundamental groups of three-dimensional graph manifolds) has a finite index subgroup that is <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$\\mathcal {H}$</annotation>\n </semantics></math>-inaccessible.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3090-3113"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The set of equivalence classes of cobounded actions of a group G $G$ on different hyperbolic metric spaces carries a natural partial order. Following Abbott–Balasubramanya–Osin, the group G $G$ is H $\mathcal {H}$ -accessible if the resulting poset has a largest element. In this paper, we prove that every nongeometric 3-manifold has a finite cover with H $\mathcal {H}$ -inaccessible fundamental group and give conditions under which the fundamental group of the original manifold is H $\mathcal {H}$ -inaccessible. We also prove that every Croke–Kleiner admissible group (a class of graphs of groups that generalizes fundamental groups of three-dimensional graph manifolds) has a finite index subgroup that is H $\mathcal {H}$ -inaccessible.

3 个网格群的最大双曲作用
一个群在不同双曲度量空间上的共界作用的等价类集合带有一个自然偏序。根据 Abbott-Balasubramanya-Osin 的观点,如果所得到的正集有一个最大元素,那么这个群就是可及的。在本文中,我们证明了每个非几何三流形都有一个有限盖,其基本群是-不可入的,并给出了原始流形的基本群是-不可入的条件。我们还证明了每一个克罗克-克莱纳可容许群(泛指三维图流形基群的一类群图)都有一个有限索引子群是-不可入的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信