Xueying Dai, Yuan Yuan, Jie Xiao, Chenghao Jiang, Xujiang Hua, Huiying Xiang, Tao Zhu, Guoyong Liu, Jiang Zhou, Ruijin Liao
{"title":"Influence of different anodised nanoporous structures on the anti‐icing and electrical properties of transmission Al lines","authors":"Xueying Dai, Yuan Yuan, Jie Xiao, Chenghao Jiang, Xujiang Hua, Huiying Xiang, Tao Zhu, Guoyong Liu, Jiang Zhou, Ruijin Liao","doi":"10.1049/hve2.12471","DOIUrl":null,"url":null,"abstract":"Ice accumulation of overhead transmission lines can lead to serious damage to power systems. Superhydrophobic nanostructured Al conductors are proposed to replace the de‐icing or ice‐melting equipment for economic advantages, good anti‐icing properties and robust electrical performance. Anodisation under different direct current densities is adopted to fabricate two nanostructures on Al conductors, including the reticular and honeycomb‐like nanoporous structures. Compared to pure Al conductors, the anodised surface of honeycomb‐like nanoporous structures exhibits lower ice adhesion (3.82 kPa) and ice accumulation. Aluminium conductor steel reinforced treated in the proposed method has also been validated to exhibit a significant anti‐glaze icing property. Additionally, corona performance and line loss are experimentally measured and calculated to prove good electrical performance. The 0.27 A Al strand shows the highest corona inception voltage (27.86 kV) and the lowest AC resistance (4.65 Ω/km), which is attributed to the good dielectric property and heat dissipation. Therefore, the proposed anti‐icing transmission conductors show profound application potential for power systems.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.12471","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ice accumulation of overhead transmission lines can lead to serious damage to power systems. Superhydrophobic nanostructured Al conductors are proposed to replace the de‐icing or ice‐melting equipment for economic advantages, good anti‐icing properties and robust electrical performance. Anodisation under different direct current densities is adopted to fabricate two nanostructures on Al conductors, including the reticular and honeycomb‐like nanoporous structures. Compared to pure Al conductors, the anodised surface of honeycomb‐like nanoporous structures exhibits lower ice adhesion (3.82 kPa) and ice accumulation. Aluminium conductor steel reinforced treated in the proposed method has also been validated to exhibit a significant anti‐glaze icing property. Additionally, corona performance and line loss are experimentally measured and calculated to prove good electrical performance. The 0.27 A Al strand shows the highest corona inception voltage (27.86 kV) and the lowest AC resistance (4.65 Ω/km), which is attributed to the good dielectric property and heat dissipation. Therefore, the proposed anti‐icing transmission conductors show profound application potential for power systems.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf