Salicylic Acid Improves Yield, Fruit Quality, and Post-Harvest Storage in Sweet Cherry (Prunus avium L.) cv. Lapins Subjected to Late-Deficit Irrigation
J. González-Villagra, Camila Chicahual, Emilio Jorquera-Fontena, Priscilla Falquetto-Gomes, A. Nunes-Nesi, Maryorie Reyes-Díaz
{"title":"Salicylic Acid Improves Yield, Fruit Quality, and Post-Harvest Storage in Sweet Cherry (Prunus avium L.) cv. Lapins Subjected to Late-Deficit Irrigation","authors":"J. González-Villagra, Camila Chicahual, Emilio Jorquera-Fontena, Priscilla Falquetto-Gomes, A. Nunes-Nesi, Maryorie Reyes-Díaz","doi":"10.3390/horticulturae10070707","DOIUrl":null,"url":null,"abstract":"This study evaluated the effect of salicylic acid (SA) application on yield, fruit quality, and post-harvest storage in Prunus avium subjected to deficit irrigation (DI). A field experiment with six-year-old P. avium cv. Lapins was performed under two water treatments: irrigation at 100% of crop evapotranspiration (ETc) [full irrigation (FI)] and irrigation at 60% ETc from the second fruit phase to harvest time (DI). A single 0.5 mM SA was applied to both water treatments at fruit color change. At harvest time, fruits were collected to determine yield, fruit quality, and quality during post-harvest storage (0, 10, 20, and 30 days). The DI reduced fruit yield (11%), fruit weight (8%), and caliber (6%) and increased firmness (7%) and total soluble solids (TSS) (5%) in P. avium compared with FI plants at harvest time. Our study showed that SA application recovered fruit yield (9%), fruit weight (5%), and caliber (4%), improving TSS in DI plants at day 0. Interestingly, SA application significantly reduced P. avium fruit cracking (78% in FI and 82% in DI). Fruit weight was reduced in all treatments, mainly decreasing by 14% in FI and 13% in DI plants at day 30 of post-harvest storage. Fruit weight did not change during post-harvest storage with SA, except on day 30, where a slight reduction was observed. TSS showed no significant differences during post-harvest storage for all treatments. Therefore, SA could be an interesting tool to mitigate the impact of DI on the yield and fruit quality of P. avium and to reduce fruit cracking and prolong fruit quality during post-harvest storage.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10070707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the effect of salicylic acid (SA) application on yield, fruit quality, and post-harvest storage in Prunus avium subjected to deficit irrigation (DI). A field experiment with six-year-old P. avium cv. Lapins was performed under two water treatments: irrigation at 100% of crop evapotranspiration (ETc) [full irrigation (FI)] and irrigation at 60% ETc from the second fruit phase to harvest time (DI). A single 0.5 mM SA was applied to both water treatments at fruit color change. At harvest time, fruits were collected to determine yield, fruit quality, and quality during post-harvest storage (0, 10, 20, and 30 days). The DI reduced fruit yield (11%), fruit weight (8%), and caliber (6%) and increased firmness (7%) and total soluble solids (TSS) (5%) in P. avium compared with FI plants at harvest time. Our study showed that SA application recovered fruit yield (9%), fruit weight (5%), and caliber (4%), improving TSS in DI plants at day 0. Interestingly, SA application significantly reduced P. avium fruit cracking (78% in FI and 82% in DI). Fruit weight was reduced in all treatments, mainly decreasing by 14% in FI and 13% in DI plants at day 30 of post-harvest storage. Fruit weight did not change during post-harvest storage with SA, except on day 30, where a slight reduction was observed. TSS showed no significant differences during post-harvest storage for all treatments. Therefore, SA could be an interesting tool to mitigate the impact of DI on the yield and fruit quality of P. avium and to reduce fruit cracking and prolong fruit quality during post-harvest storage.