Numerical simulation for MHD slip flow with heat transfer over a stretching bullet-shaped object

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-07-04 DOI:10.1002/htj.23117
Surbhi Sharma, Mamta Goyal, Amit Dadheech
{"title":"Numerical simulation for MHD slip flow with heat transfer over a stretching bullet-shaped object","authors":"Surbhi Sharma,&nbsp;Mamta Goyal,&nbsp;Amit Dadheech","doi":"10.1002/htj.23117","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates magnetohydrodynamic (MHD) boundary layer slip flow with heat transfer over a bullet shaped object. The study addresses a significant problem in fluid dynamics and heat transport with applications in various engineering and industrial domains, including aerospace, material processing, and energy systems. The governing equations are resolved using the bvp4c, an inbuilt MATLAB tool, and the arithmetic computation for the momentum and thermotic equations are executed. The results are exhibited graphically. Numerical outcomes are graphically depicted with the aid of velocity and temperature profiles for several model variables. The achieved results exhibit a promising agreement with the previously established findings available in the open literature. The heat transfer processes and fluid flow are remarkably influenced by means of the ratio of surface thickness and stretching potential. The results obtained designated that the Mixed convection parameter <i>λ</i> increases momentum BL thickness, whereas the temperature profile diminishes. Furthermore, momentum and temperature profile improve for surface thickness parameter <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math>. The current investigation highlights the potential utility of heat transport rate and friction factor in the industrial divisions for regulating cooling rates and enhancing the quality of end products.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3948-3964"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates magnetohydrodynamic (MHD) boundary layer slip flow with heat transfer over a bullet shaped object. The study addresses a significant problem in fluid dynamics and heat transport with applications in various engineering and industrial domains, including aerospace, material processing, and energy systems. The governing equations are resolved using the bvp4c, an inbuilt MATLAB tool, and the arithmetic computation for the momentum and thermotic equations are executed. The results are exhibited graphically. Numerical outcomes are graphically depicted with the aid of velocity and temperature profiles for several model variables. The achieved results exhibit a promising agreement with the previously established findings available in the open literature. The heat transfer processes and fluid flow are remarkably influenced by means of the ratio of surface thickness and stretching potential. The results obtained designated that the Mixed convection parameter λ increases momentum BL thickness, whereas the temperature profile diminishes. Furthermore, momentum and temperature profile improve for surface thickness parameter s $s$ . The current investigation highlights the potential utility of heat transport rate and friction factor in the industrial divisions for regulating cooling rates and enhancing the quality of end products.

带热传导的 MHD 滑动流在拉伸子弹形物体上的数值模拟
本文研究了子弹形状物体上带有热传递的磁流体动力学(MHD)边界层滑移流。该研究解决了流体动力学和热传输中的一个重要问题,可应用于各种工程和工业领域,包括航空航天、材料加工和能源系统。使用 MATLAB 内置工具 bvp4c 解决了控制方程,并执行了动量方程和热量方程的算术计算。计算结果以图形显示。数值结果借助多个模型变量的速度和温度曲线以图表形式展示。所取得的结果与之前公开文献中的研究结果非常吻合。传热过程和流体流动受到表面厚度和拉伸势能比率的显著影响。研究结果表明,混合对流参数 λ 增加了动量 BL 厚度,而温度曲线则减小了。此外,当表面厚度参数为 。目前的研究凸显了热传导率和摩擦因数在工业领域调节冷却速率和提高最终产品质量的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信