Synaptic behavior of a composite multiferroic heterostructure FeBSiC – PZT at resonant excitation

F. Fedulov, D. V. Savelev, Y. Fetisov
{"title":"Synaptic behavior of a composite multiferroic heterostructure FeBSiC – PZT at resonant excitation","authors":"F. Fedulov, D. V. Savelev, Y. Fetisov","doi":"10.3897/j.moem.10.2.124089","DOIUrl":null,"url":null,"abstract":"Nowadays, one of the promising ways for the development of computing systems with high performance and low energy consumption is the creation of artificial synaptic devices that imitate the functions of biological synapses. Such devices have a significant potential for effectively solving problems of pattern recognition, classification, control, and the treatment of diseases of the nervous system. The work demonstrates the imitation of synaptic behavior in a composite multiferroic heterostructure based on the piezoceramics of lead zirconate titanate (PZT) and the amorphous magnetic alloy Metglas. The characteristics of the heterostructure were measured by resonant excitation of the magnetoelectric (ME) effect and applying electric field pulses of various amplitudes and polarities. The ME coefficient αE was considered as a synaptic weight, and the output electrical voltage of the heterostructure as a postsynaptic potential. The study demonstrates the possibility of simulating long-term potentiation (LTP) and depression (LTD) in the ME heterostructure, as well as spike-timing-dependent plasticity (STDP). This work shows promise for creating neuromorphic computing systems based on multiferroic composite heterostructures.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/j.moem.10.2.124089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, one of the promising ways for the development of computing systems with high performance and low energy consumption is the creation of artificial synaptic devices that imitate the functions of biological synapses. Such devices have a significant potential for effectively solving problems of pattern recognition, classification, control, and the treatment of diseases of the nervous system. The work demonstrates the imitation of synaptic behavior in a composite multiferroic heterostructure based on the piezoceramics of lead zirconate titanate (PZT) and the amorphous magnetic alloy Metglas. The characteristics of the heterostructure were measured by resonant excitation of the magnetoelectric (ME) effect and applying electric field pulses of various amplitudes and polarities. The ME coefficient αE was considered as a synaptic weight, and the output electrical voltage of the heterostructure as a postsynaptic potential. The study demonstrates the possibility of simulating long-term potentiation (LTP) and depression (LTD) in the ME heterostructure, as well as spike-timing-dependent plasticity (STDP). This work shows promise for creating neuromorphic computing systems based on multiferroic composite heterostructures.
复合多铁氧体异质结构 FeBSiC - PZT 在共振激励下的突触行为
如今,开发高性能、低能耗计算系统的一个有前途的方法是制造模仿生物突触功能的人工突触设备。这种装置在有效解决模式识别、分类、控制和治疗神经系统疾病等问题方面具有巨大潜力。该研究成果展示了一种基于锆钛酸铅(PZT)压电陶瓷和非晶磁性合金 Metglas 的复合多铁性异质结构的突触行为模仿。通过共振激发磁电(ME)效应并施加不同振幅和极性的电场脉冲,测量了异质结构的特性。ME 系数 αE 被视为突触权重,而异质结构的输出电压则被视为突触后电位。这项研究证明了在 ME 异质结构中模拟长期电位(LTP)和抑制(LTD)以及尖峰计时可塑性(STDP)的可能性。这项工作为基于多铁氧体复合异质结构创建神经形态计算系统带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信