Split-Step Galerkin FE Method for Two-Dimensional Space-Fractional CNLS

Xiaogang Zhu, Yaping Zhang, Yufeng Nie
{"title":"Split-Step Galerkin FE Method for Two-Dimensional Space-Fractional CNLS","authors":"Xiaogang Zhu, Yaping Zhang, Yufeng Nie","doi":"10.3390/fractalfract8070402","DOIUrl":null,"url":null,"abstract":"In this paper, we study a split-step Galerkin finite element (FE) method for the two-dimensional Riesz space-fractional coupled nonlinear Schrödinger equations (CNLSs). The proposed method adopts a second-order split-step technique to handle the nonlinearity and FE approximation to discretize the fractional derivatives in space, which avoids iteration at each time layer. The analysis of mass conservative and convergent properties for this split-step FE scheme is performed. To test its capability, some numerical tests and the simulation of the double solitons intersection and plane wave are carried out. The results and comparisons with the algorithm combined with Newton’s iteration illustrate its effectiveness and advantages in computational efficiency.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":" 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a split-step Galerkin finite element (FE) method for the two-dimensional Riesz space-fractional coupled nonlinear Schrödinger equations (CNLSs). The proposed method adopts a second-order split-step technique to handle the nonlinearity and FE approximation to discretize the fractional derivatives in space, which avoids iteration at each time layer. The analysis of mass conservative and convergent properties for this split-step FE scheme is performed. To test its capability, some numerical tests and the simulation of the double solitons intersection and plane wave are carried out. The results and comparisons with the algorithm combined with Newton’s iteration illustrate its effectiveness and advantages in computational efficiency.
二维空间-分数 CNLS 的分步 Galerkin FE 方法
本文研究了二维 Riesz 空间-分数耦合非线性薛定谔方程(CNLS)的分步 Galerkin 有限元(FE)方法。所提出的方法采用二阶分步技术处理非线性问题,并采用 FE 近似方法离散空间分数导数,从而避免了每个时间层的迭代。对这种分步 FE 方案的质量保证和收敛特性进行了分析。为了测试其能力,还进行了一些数值测试以及双孤子交汇和平面波的模拟。结果以及与牛顿迭代相结合的算法的比较说明了该算法的有效性以及在计算效率方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信