Effect of Chamfered Turbulators on Performance of Solar Air Heater - Numerical Study

Q2 Mathematics
Arunkumar H S, Madhwesh N, Anirudh Hegde K, Manjunath Mallashetty Shivamallaiah, Kota Vasudeva Karanth, Younes Amini
{"title":"Effect of Chamfered Turbulators on Performance of Solar Air Heater - Numerical Study","authors":"Arunkumar H S, Madhwesh N, Anirudh Hegde K, Manjunath Mallashetty Shivamallaiah, Kota Vasudeva Karanth, Younes Amini","doi":"10.37934/cfdl.16.11.1736","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical analysis of the thermal performance improvement in a flat plate solar air heater equipped with chamfered turbulators attached below the absorber plate for evaluating performance for Reynolds numbers ranging from 3,000 to 21,000. According to the research, chamfered turbulators caused the flow to become highly turbulent. This flow behaviour with flow separation around the turbulators positively affects performance. This paper attempts to explain the complex flow behaviour found during the analysis. The turbulator diameter varies in 1 mm increments from 3 to 7 mm at a constant longitudinal pitch of 200 mm. The number of turbulator rows in the transverse direction is kept constant at three. The chamfer is represented by the flow attack angle, which can be 30°, 45°, or 60° facing the direction of flow and opposing the direction of flow. The results showed that a 7mm diameter turbulator with a 30° chamfer angle placed against the flow of air yielded a considerably more significant thermal enhancement factor of 1.15 over the spectrum of flow Reynolds number studied","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.11.1736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a numerical analysis of the thermal performance improvement in a flat plate solar air heater equipped with chamfered turbulators attached below the absorber plate for evaluating performance for Reynolds numbers ranging from 3,000 to 21,000. According to the research, chamfered turbulators caused the flow to become highly turbulent. This flow behaviour with flow separation around the turbulators positively affects performance. This paper attempts to explain the complex flow behaviour found during the analysis. The turbulator diameter varies in 1 mm increments from 3 to 7 mm at a constant longitudinal pitch of 200 mm. The number of turbulator rows in the transverse direction is kept constant at three. The chamfer is represented by the flow attack angle, which can be 30°, 45°, or 60° facing the direction of flow and opposing the direction of flow. The results showed that a 7mm diameter turbulator with a 30° chamfer angle placed against the flow of air yielded a considerably more significant thermal enhancement factor of 1.15 over the spectrum of flow Reynolds number studied
倒角涡轮对太阳能空气加热器性能的影响 - 数值研究
本文对在吸收板下方装有倒角湍流器的平板式太阳能空气加热器的热性能改进进行了数值分析,以评估雷诺数在 3,000 到 21,000 之间的性能。研究表明,倒角涡轮会导致气流高度紊流。这种在涡轮周围出现流动分离的流动行为会对性能产生积极影响。本文试图解释分析过程中发现的复杂流动行为。湍流器直径以 1 毫米为增量,从 3 毫米到 7 毫米不等,纵向间距恒定为 200 毫米。横向的涡轮排数保持不变,为三排。倒角用流攻角表示,流攻角可以是 30°、45° 或 60°,面向流动方向,也可以是与流动方向相反。结果表明,直径为 7 毫米、倒角为 30°、与气流方向相反的湍流器在所研究的雷诺数范围内产生的热增强系数为 1.15,明显更显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信