Determining photon flux and effective optical path length in intensified flow photoreactors

Stefan D. A. Zondag, Jasper H. A. Schuurmans, Arnab Chaudhuri, Robin P. L. Visser, Cíntia Soares, Natan Padoin, Koen P. L. Kuijpers, Matthieu Dorbec, John van der Schaaf, Timothy Noël
{"title":"Determining photon flux and effective optical path length in intensified flow photoreactors","authors":"Stefan D. A. Zondag, Jasper H. A. Schuurmans, Arnab Chaudhuri, Robin P. L. Visser, Cíntia Soares, Natan Padoin, Koen P. L. Kuijpers, Matthieu Dorbec, John van der Schaaf, Timothy Noël","doi":"10.1038/s44286-024-00089-3","DOIUrl":null,"url":null,"abstract":"Photocatalysis for small-molecule activation has advanced considerably over the past decade, yet its scale-up remains challenging in part due to photon attenuation effects. One promising solution lies in combining high photonic intensities with continuous-flow reactor technology, requiring careful understanding of photon transport for successful implementation. Here, to address this, we introduce a characterization approach, starting with radiometric light source analysis, followed by three-dimensional reactor and light source simulation. This strategy, when followed up with chemical actinometry experiments, decouples photon flux quantification and path length determination, substantially curtailing the experimental process. The workflow proves versatile across various reactor systems, simplifying intricate light interactions into a single one-dimensional parameter—the effective optical path length. This parameter effectively characterizes photoreactor setups, irrespective of scale, geometry, light intensity or concentration. Additionally, the proposed workflow provides insight into light source positioning and reactor design, and facilitates experiments at lower concentrations, ensuring representative reactor operation. In essence, our approach provides a thorough, efficient and consistent framework for reactor irradiation characterization. The characterization of light irradiation for intensified flow reactors extends beyond the determination of photon fluxes, requiring the precise determination of optical path lengths. Here the authors introduce a systematic workflow that integrates radiometry, ray-tracing simulations and actinometry to obtain these system parameters.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 7","pages":"462-471"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00089-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalysis for small-molecule activation has advanced considerably over the past decade, yet its scale-up remains challenging in part due to photon attenuation effects. One promising solution lies in combining high photonic intensities with continuous-flow reactor technology, requiring careful understanding of photon transport for successful implementation. Here, to address this, we introduce a characterization approach, starting with radiometric light source analysis, followed by three-dimensional reactor and light source simulation. This strategy, when followed up with chemical actinometry experiments, decouples photon flux quantification and path length determination, substantially curtailing the experimental process. The workflow proves versatile across various reactor systems, simplifying intricate light interactions into a single one-dimensional parameter—the effective optical path length. This parameter effectively characterizes photoreactor setups, irrespective of scale, geometry, light intensity or concentration. Additionally, the proposed workflow provides insight into light source positioning and reactor design, and facilitates experiments at lower concentrations, ensuring representative reactor operation. In essence, our approach provides a thorough, efficient and consistent framework for reactor irradiation characterization. The characterization of light irradiation for intensified flow reactors extends beyond the determination of photon fluxes, requiring the precise determination of optical path lengths. Here the authors introduce a systematic workflow that integrates radiometry, ray-tracing simulations and actinometry to obtain these system parameters.

Abstract Image

确定强化流动光反应器中的光子通量和有效光路长度
在过去十年中,用于小分子活化的光催化技术取得了长足进步,但由于光子衰减效应等原因,其规模化仍面临挑战。一种很有前景的解决方案是将高光子强度与连续流反应器技术相结合,这需要仔细了解光子传输,才能成功实施。为了解决这个问题,我们在这里介绍一种表征方法,首先是辐射光源分析,然后是三维反应器和光源模拟。这一策略与化学光度测定实验相结合,将光子通量量化与路径长度测定分离开来,大大缩短了实验过程。该工作流程适用于各种反应器系统,将错综复杂的光相互作用简化为单一的一维参数--有效光路长度。无论规模、几何形状、光强或浓度如何,该参数都能有效描述光反应器设置的特征。此外,所提出的工作流程还有助于深入了解光源定位和反应器设计,并有助于在较低浓度下进行实验,确保反应器的运行具有代表性。从本质上讲,我们的方法为反应器辐照表征提供了一个全面、高效和一致的框架。强化流动反应器的光辐照表征不仅仅是确定光子通量,还需要精确确定光路长度。在此,作者介绍了一个系统的工作流程,该流程整合了辐射测量、光线跟踪模拟和光动测量,以获得这些系统参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信