{"title":"Rearrangement inequalities on the lattice graph","authors":"Shubham Gupta, Stefan Steinerberger","doi":"10.1112/blms.13122","DOIUrl":null,"url":null,"abstract":"<p>The Polya–Szegő inequality in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> states that, given a nonnegative function <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f:\\mathbb {R}^{n} \\rightarrow \\mathbb {R}$</annotation>\n </semantics></math>, its spherically symmetric decreasing rearrangement <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f^*:\\mathbb {R}^{n} \\rightarrow \\mathbb {R}$</annotation>\n </semantics></math> is ‘smoother’ in the sense of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n </mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n <mo>⩽</mo>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n </mrow>\n <annotation>$\\Vert \\nabla f^*\\Vert _{L^p} \\leqslant \\Vert \\nabla f\\Vert _{L^p}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>. We study analogues on the lattice grid graph <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {Z}^2$</annotation>\n </semantics></math>. The spiral rearrangement is known to satisfy the Polya–Szegő inequality for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$p=1$</annotation>\n </semantics></math>, the Wang-Wang rearrangement satisfies it for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$p=\\infty$</annotation>\n </semantics></math> and no rearrangement can satisfy it for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p=2$</annotation>\n </semantics></math>. We develop a robust approach to show that both these rearrangements satisfy the Polya–Szegő inequality up to a constant for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>. In particular, the Wang-Wang rearrangement satisfies <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n </mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n <mo>⩽</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n </mrow>\n <annotation>$\\Vert \\nabla f^*\\Vert _{L^p} \\leqslant 2^{1/p} \\Vert \\nabla f\\Vert _{L^p}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>. We also show the existence of (many) rearrangements on <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n </mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n <mo>⩽</mo>\n <msub>\n <mi>c</mi>\n <mi>d</mi>\n </msub>\n <mo>·</mo>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n </mrow>\n <annotation>$\\Vert \\nabla f^*\\Vert _{L^p} \\leqslant c_d \\cdot \\Vert \\nabla f\\Vert _{L^p}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3145-3163"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13122","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Polya–Szegő inequality in states that, given a nonnegative function , its spherically symmetric decreasing rearrangement is ‘smoother’ in the sense of for all . We study analogues on the lattice grid graph . The spiral rearrangement is known to satisfy the Polya–Szegő inequality for , the Wang-Wang rearrangement satisfies it for and no rearrangement can satisfy it for . We develop a robust approach to show that both these rearrangements satisfy the Polya–Szegő inequality up to a constant for all . In particular, the Wang-Wang rearrangement satisfies for all . We also show the existence of (many) rearrangements on such that for all .