Francesco Zito, N. Giannoccaro, Roberto Serio, S. Strazzella
{"title":"Analysis and Development of an IoT System for an Agrivoltaics Plant","authors":"Francesco Zito, N. Giannoccaro, Roberto Serio, S. Strazzella","doi":"10.3390/technologies12070106","DOIUrl":null,"url":null,"abstract":"This article illustrates the development of SolarFertigation (SF), an IoT (Internet of Things) solution for precision agriculture. Contrary to similar systems on the market, SolarFertigation can monitor and optimize fertigation autonomously, based on the analysis of data collected through the cloud. The system is made up of two main components: the central unit, which enables the precise deployment and distribution of water and fertilizers in different areas of the agricultural field, and the sensor node, which oversees collecting environmental and soil data. This article delves into the evolution of the system, focusing on structural and architectural changes to develop an infrastructure suitable for implementing a predictive model based on artificial intelligence and big data. Aspects concerning both the sensor node, such as energy management, accuracy of solar radiation readings, and qualitative soil moisture measurements, as well as implementations to the hydraulic system and the control and monitoring system of the central unit, are explored. This article provides an overview of the results obtained from solar radiation and soil moisture measurements. In addition, the results of an experimental campaign, in which 300 salad plants were grown using the SolarFertigation system in a photovoltaic field, are presented. This study demonstrated the effectiveness and applicability of the system under real-world conditions and highlighted its potential in optimizing resources and increasing agricultural productivity, especially in agrivoltaic settings.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies12070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article illustrates the development of SolarFertigation (SF), an IoT (Internet of Things) solution for precision agriculture. Contrary to similar systems on the market, SolarFertigation can monitor and optimize fertigation autonomously, based on the analysis of data collected through the cloud. The system is made up of two main components: the central unit, which enables the precise deployment and distribution of water and fertilizers in different areas of the agricultural field, and the sensor node, which oversees collecting environmental and soil data. This article delves into the evolution of the system, focusing on structural and architectural changes to develop an infrastructure suitable for implementing a predictive model based on artificial intelligence and big data. Aspects concerning both the sensor node, such as energy management, accuracy of solar radiation readings, and qualitative soil moisture measurements, as well as implementations to the hydraulic system and the control and monitoring system of the central unit, are explored. This article provides an overview of the results obtained from solar radiation and soil moisture measurements. In addition, the results of an experimental campaign, in which 300 salad plants were grown using the SolarFertigation system in a photovoltaic field, are presented. This study demonstrated the effectiveness and applicability of the system under real-world conditions and highlighted its potential in optimizing resources and increasing agricultural productivity, especially in agrivoltaic settings.