{"title":"RESPONSE SURFACE METHODOLOGY-AIDED DEVELOPMENT OF PIRFENIDONE-LOADED SOLID LIPID NANOPARTICLES FOR INTRAPULMONARY DRUG DELIVERY SYSTEM","authors":"Kevin Kwok, G. Suhariyono, Silvia Surini","doi":"10.22159/ijap.2024v16i4.50231","DOIUrl":null,"url":null,"abstract":"Objective: This study aims to determine the optimized Pirfenidone-loaded Solid Lipid Nanoparticles (P-SLN) formula for Intrapulmonary Drug Delivery System (IPDDS) using Response Surface Methodology (RSM).\nMethods: Box-Behnken design was applied to create fifteen P-SLN formulas comprising three independent variables, namely lipid-to-drug ratio, polymer type, and polymer concentration, and three dependent variables, including particle size, Polydispersity Index (PDI), and entrapment efficiency. The P-SLNs were prepared by solvent injection followed by the ultrasonication method. Those formulas were optimized with the RSM approach using the Design Expert®. Then, the optimized P-SLN was further characterized for morphology, moisture content, aerodynamic performance, and dissolution profile.\nResults: The optimization process, assisted by RSM, determined that the optimized P-SLN had a lipid-to-drug ratio of 6:1 and contained 0.5% Plasdone K-29/32. The resulting P-SLN had a spherical shape with a particle size of 212.7 nm, a PDI of 0.39, an entrapment efficiency of 95.02%, and a low moisture content of 1.59%. The optimized P-SLN also exhibited appropriate IPDDS required characteristics, including a Mass Median Aerodynamic Diameter (MMAD) ranging from 0.540–12.122 μm and a Respirable Fraction (RF) of 12.4%. Moreover, the release of pirfenidone from this optimized formula was 89.61% and 69.28% in pH 4.5 and 7.4 buffer media, respectively, in 45 min through a combination of diffusion and polymer swelling mechanisms.\nConclusion: The optimized P-SLN showed promising potential as an IPDDS for pirfenidone.","PeriodicalId":507178,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22159/ijap.2024v16i4.50231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aims to determine the optimized Pirfenidone-loaded Solid Lipid Nanoparticles (P-SLN) formula for Intrapulmonary Drug Delivery System (IPDDS) using Response Surface Methodology (RSM).
Methods: Box-Behnken design was applied to create fifteen P-SLN formulas comprising three independent variables, namely lipid-to-drug ratio, polymer type, and polymer concentration, and three dependent variables, including particle size, Polydispersity Index (PDI), and entrapment efficiency. The P-SLNs were prepared by solvent injection followed by the ultrasonication method. Those formulas were optimized with the RSM approach using the Design Expert®. Then, the optimized P-SLN was further characterized for morphology, moisture content, aerodynamic performance, and dissolution profile.
Results: The optimization process, assisted by RSM, determined that the optimized P-SLN had a lipid-to-drug ratio of 6:1 and contained 0.5% Plasdone K-29/32. The resulting P-SLN had a spherical shape with a particle size of 212.7 nm, a PDI of 0.39, an entrapment efficiency of 95.02%, and a low moisture content of 1.59%. The optimized P-SLN also exhibited appropriate IPDDS required characteristics, including a Mass Median Aerodynamic Diameter (MMAD) ranging from 0.540–12.122 μm and a Respirable Fraction (RF) of 12.4%. Moreover, the release of pirfenidone from this optimized formula was 89.61% and 69.28% in pH 4.5 and 7.4 buffer media, respectively, in 45 min through a combination of diffusion and polymer swelling mechanisms.
Conclusion: The optimized P-SLN showed promising potential as an IPDDS for pirfenidone.