High-Speed and Long-Distance Spin-Wave Propagation in Spinel γ-Fe2O3 Epitaxial Thin Films

Siyi Tang, Lihao Yao, Md Shamim Sarker, Zhiqiang Liao, Kaijie Ma, Hiroyasu Yamahara, Hitoshi Tabata, Munetoshi Seki
{"title":"High-Speed and Long-Distance Spin-Wave Propagation in Spinel γ-Fe2O3 Epitaxial Thin Films","authors":"Siyi Tang,&nbsp;Lihao Yao,&nbsp;Md Shamim Sarker,&nbsp;Zhiqiang Liao,&nbsp;Kaijie Ma,&nbsp;Hiroyasu Yamahara,&nbsp;Hitoshi Tabata,&nbsp;Munetoshi Seki","doi":"10.1002/apxr.202400066","DOIUrl":null,"url":null,"abstract":"<p>In spin wave (SW) devices, the modulation of SWs for computational units is necessary, imposing extremely high demands on material systems. In this study, high-quality epitaxial-grown spinel γ-Fe<sub>2</sub>O<sub>3</sub> thin films on conductive Nb-doped SrTiO<sub>3</sub> substrates, achieving fast-speed, high-frequency, and long-distance SW propagation in this ferrimagnetic material, are developed. A novel two-step film growth technique using pulsed laser deposition is proposed and optimized, and the damping constant, exchange stiffness, and anisotropies of γ-Fe<sub>2</sub>O<sub>3</sub> are determined. Compared to reported semiconductor magnetic materials, these epitaxial-grown γ-Fe<sub>2</sub>O<sub>3</sub> thin films exhibit a significantly lower damping constant of 10<sup>−2</sup>, representing a substantial advancement. Using finite-difference calculations, SW propagation is simulated, and vital information on transmission distance and dispersion curves is obtained. Experimental results show excellent agreement with these simulations. By applying a voltage to both sides of the conducting substrate, current across the film and SW device, resulting in the frequency shift of the SWs, is generated. These results demonstrate that high-quality γ-Fe<sub>2</sub>O<sub>3</sub> films developed through the two-step growth method can efficiently propagate SWs, offering possibilities for various modulation methods in SW-based computing devices. This study positions spinel γ-Fe<sub>2</sub>O<sub>3</sub> as a promising ferrimagnetic candidate for future applications in efficient SW modulation within computational systems.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In spin wave (SW) devices, the modulation of SWs for computational units is necessary, imposing extremely high demands on material systems. In this study, high-quality epitaxial-grown spinel γ-Fe2O3 thin films on conductive Nb-doped SrTiO3 substrates, achieving fast-speed, high-frequency, and long-distance SW propagation in this ferrimagnetic material, are developed. A novel two-step film growth technique using pulsed laser deposition is proposed and optimized, and the damping constant, exchange stiffness, and anisotropies of γ-Fe2O3 are determined. Compared to reported semiconductor magnetic materials, these epitaxial-grown γ-Fe2O3 thin films exhibit a significantly lower damping constant of 10−2, representing a substantial advancement. Using finite-difference calculations, SW propagation is simulated, and vital information on transmission distance and dispersion curves is obtained. Experimental results show excellent agreement with these simulations. By applying a voltage to both sides of the conducting substrate, current across the film and SW device, resulting in the frequency shift of the SWs, is generated. These results demonstrate that high-quality γ-Fe2O3 films developed through the two-step growth method can efficiently propagate SWs, offering possibilities for various modulation methods in SW-based computing devices. This study positions spinel γ-Fe2O3 as a promising ferrimagnetic candidate for future applications in efficient SW modulation within computational systems.

Abstract Image

尖晶石 γ-Fe2O3 外延薄膜中的高速长距离自旋波传播
在自旋波(SW)设备中,需要对计算单元的 SW 进行调制,这对材料系统提出了极高的要求。本研究在导电的掺铌 SrTiO3 基底上开发了高质量的外延生长尖晶石 γ-Fe2O3 薄膜,在这种铁磁性材料中实现了自旋波的高速、高频和长距离传播。提出并优化了一种使用脉冲激光沉积的新型两步薄膜生长技术,并确定了 γ-Fe2O3 的阻尼常数、交换刚度和各向异性。与已报道的半导体磁性材料相比,这些外延生长的 γ-Fe2O3 薄膜的阻尼常数明显降低到了 10-2,这是一项重大进步。利用有限差分计算模拟了 SW 传播,并获得了有关传输距离和色散曲线的重要信息。实验结果与模拟结果非常吻合。通过在导电基板的两侧施加电压,薄膜和 SW 器件上会产生电流,从而导致 SW 的频率偏移。这些结果表明,通过两步生长法开发的高质量 γ-Fe2O3 薄膜可以有效地传播 SW,为基于 SW 的计算设备中的各种调制方法提供了可能性。这项研究将尖晶石 γ-Fe2O3 定义为一种有前途的铁磁性候选材料,未来可应用于计算系统中的高效 SW 调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信