Estimating travel time in the Helsinki region utilising sequential Bayesian inference

S. A. Zargari, Navid Khorshidi, Hamid Mirzahossein, Samim Shakoori, Xia Jin
{"title":"Estimating travel time in the Helsinki region utilising sequential Bayesian inference","authors":"S. A. Zargari, Navid Khorshidi, Hamid Mirzahossein, Samim Shakoori, Xia Jin","doi":"10.1680/jmuen.23.00044","DOIUrl":null,"url":null,"abstract":"This paper explores Bayesian inference's application to dynamic travel time estimation in the Helsinki region. Accurate travel time prediction is crucial in a wide range of fields, including departure time and routing. Limited real-time data challenges modelling accuracy. To address this, this paper utilises Bayesian inference, particularly sequential Bayesian inference for evolving observed values. Incorporating 2018 real-time data and 2015 information as prior knowledge, travel time distribution will be updated. Validation yields a 4.0% mean absolute error between the updated 2018 distribution and actual travel time. Also, using the 2015 posterior distribution as prior via sequential Bayesian inference yields a 4.6% mean absolute error. Results highlight that sequential Bayesian inference is an effective tool for updating distributions. The paper underscores Bayesian inference's potential in addressing data scarcity and enhancing transportation model accuracy. By supplying precise travel time estimates, this approach benefits congestion relief and travel planning. With evolving travel time data, Bayesian inference promises to advance transportation modelling.","PeriodicalId":514711,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Municipal Engineer","volume":" 693","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Municipal Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jmuen.23.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores Bayesian inference's application to dynamic travel time estimation in the Helsinki region. Accurate travel time prediction is crucial in a wide range of fields, including departure time and routing. Limited real-time data challenges modelling accuracy. To address this, this paper utilises Bayesian inference, particularly sequential Bayesian inference for evolving observed values. Incorporating 2018 real-time data and 2015 information as prior knowledge, travel time distribution will be updated. Validation yields a 4.0% mean absolute error between the updated 2018 distribution and actual travel time. Also, using the 2015 posterior distribution as prior via sequential Bayesian inference yields a 4.6% mean absolute error. Results highlight that sequential Bayesian inference is an effective tool for updating distributions. The paper underscores Bayesian inference's potential in addressing data scarcity and enhancing transportation model accuracy. By supplying precise travel time estimates, this approach benefits congestion relief and travel planning. With evolving travel time data, Bayesian inference promises to advance transportation modelling.
利用序列贝叶斯推理估算赫尔辛基地区的旅行时间
本文探讨了贝叶斯推理在赫尔辛基地区动态旅行时间估算中的应用。准确的旅行时间预测在出发时间和路线选择等多个领域都至关重要。有限的实时数据对建模的准确性提出了挑战。为解决这一问题,本文采用了贝叶斯推断法,特别是针对观测值演变的序列贝叶斯推断法。将 2018 年的实时数据和 2015 年的信息作为先验知识,对旅行时间分布进行更新。验证结果显示,更新后的 2018 年分布与实际旅行时间之间的平均绝对误差为 4.0%。此外,通过序列贝叶斯推理使用 2015 年的后验分布作为先验知识,也会产生 4.6% 的平均绝对误差。结果突出表明,序列贝叶斯推理是更新分布的有效工具。本文强调了贝叶斯推理在解决数据稀缺和提高交通模型准确性方面的潜力。通过提供精确的旅行时间估计值,这种方法有利于缓解拥堵和旅行规划。随着旅行时间数据的不断发展,贝叶斯推理有望推动交通模型的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信