M. Bonato, I. Baronchelli, Viviana Casasola, G. De Zotti, Leonardo Trobbiani, E. Ruli, Vidhi Tailor, Simone Bianchi
{"title":"Correlations between IR Luminosity, Star Formation Rate, and CO Luminosity in the Local Universe","authors":"M. Bonato, I. Baronchelli, Viviana Casasola, G. De Zotti, Leonardo Trobbiani, E. Ruli, Vidhi Tailor, Simone Bianchi","doi":"10.3390/galaxies12040037","DOIUrl":null,"url":null,"abstract":"We exploit the DustPedia sample of galaxies within approximately 40 Mpc, selecting 388 sources, to investigate the correlations between IR luminosity (LIR), the star formation rate (SFR), and the CO(1-0) luminosity (LCO) down to much lower luminosities than reached by previous analyses. We find a sub-linear dependence of the SFR on LIR. Below log(LIR/L⊙)≃10 or SFR≃1M⊙yr−1, the SFR/LIR ratio substantially exceeds the standard ratio for dust-enshrouded star formation, and the difference increases with decreasing LIR values. This implies that the effect of unobscured star formation overcomes that of dust heating by old stars, at variance with results based on the Planck ERCSC galaxy sample. We also find that the relations between the LCO and LIR or the SFR are consistent with those obtained at much higher luminosities.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"113 33","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/galaxies12040037","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We exploit the DustPedia sample of galaxies within approximately 40 Mpc, selecting 388 sources, to investigate the correlations between IR luminosity (LIR), the star formation rate (SFR), and the CO(1-0) luminosity (LCO) down to much lower luminosities than reached by previous analyses. We find a sub-linear dependence of the SFR on LIR. Below log(LIR/L⊙)≃10 or SFR≃1M⊙yr−1, the SFR/LIR ratio substantially exceeds the standard ratio for dust-enshrouded star formation, and the difference increases with decreasing LIR values. This implies that the effect of unobscured star formation overcomes that of dust heating by old stars, at variance with results based on the Planck ERCSC galaxy sample. We also find that the relations between the LCO and LIR or the SFR are consistent with those obtained at much higher luminosities.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico