{"title":"A Workflow for the Compensation of Substrate Defects When Overprinting in Extrusion-Based Processes","authors":"Fynn Atzler, Simon Hümbert, Heinz Voggenreiter","doi":"10.3390/jmmp8040147","DOIUrl":null,"url":null,"abstract":"Fused granular fabrication (FGF) is used in industrial applications to manufacture complex parts in a short time frame and with reduced costs. Recently, the overprinting of continuous fibre-reinforced laminates has been discussed to produce high-performance, functional structures. A hybrid process combining FGF with Automated Fibre Placement (AFP) was developed to implement this approach, where an additively manufactured structure is bonded in situ onto a thermoplastic laminate. However, this combination places great demands on process control, especially in the first printing layer. When 3D printing onto a laminate, the height of the first printed layer is decisive to the shear strength of the bonding. Manufacturing-induced surface defects of a laminate, like thermal warpage, gaps, and tape overlaps, can result in deviations from the ideal geometry and thus impair the bonding strength when left uncompensated. This study, therefore, proposes a novel process flow that uses a 3D scan of a laminate to adjust the geometry of the additively manufactured structure to achieve a constant layer height in the 3D print and, thus, constant mechanical properties. For the above-listed surface defects, only thermal warpage was found to have a significant effect on the bonding strength.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Fused granular fabrication (FGF) is used in industrial applications to manufacture complex parts in a short time frame and with reduced costs. Recently, the overprinting of continuous fibre-reinforced laminates has been discussed to produce high-performance, functional structures. A hybrid process combining FGF with Automated Fibre Placement (AFP) was developed to implement this approach, where an additively manufactured structure is bonded in situ onto a thermoplastic laminate. However, this combination places great demands on process control, especially in the first printing layer. When 3D printing onto a laminate, the height of the first printed layer is decisive to the shear strength of the bonding. Manufacturing-induced surface defects of a laminate, like thermal warpage, gaps, and tape overlaps, can result in deviations from the ideal geometry and thus impair the bonding strength when left uncompensated. This study, therefore, proposes a novel process flow that uses a 3D scan of a laminate to adjust the geometry of the additively manufactured structure to achieve a constant layer height in the 3D print and, thus, constant mechanical properties. For the above-listed surface defects, only thermal warpage was found to have a significant effect on the bonding strength.