{"title":"An edge-based event-triggered delayed distributed algorithm for economic dispatch in smart grids","authors":"Chengze Ren, Xuguang Hu, Haoran Zhao, Qiuye Sun","doi":"10.1049/cth2.12720","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an edge-based event-triggered delay distributed algorithm for solving the economic dispatch problem (EDP) in smart grids. The objective of the EDP is to minimize the total generation cost by allocating power to individual generators, each with its local generation constraint. To save the overhead of communication resources between agents, an edge-based event-triggered mechanism is suggested. By setting distinct triggering thresholds for each communication edge, the agent may efficiently regulate the communication frequency among all neighbors. However, in practice, owing to the instability of the network, the agent may receive information regarding its neighbors, leading to communication lags for every communication link. The virtual agent technique and double-stochastic matrix augmentation technique provide an equivalent delay-free EDP. It is demonstrated that the proposed algorithm can asymptotically converge to the global optimal solution as long as the communication delay is arbitrary, time-varying, and random, but bounded. Objective and clear evidence is provided through a case study in smart grids to verify the algorithm's feasibility.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 13","pages":"1729-1738"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12720","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12720","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an edge-based event-triggered delay distributed algorithm for solving the economic dispatch problem (EDP) in smart grids. The objective of the EDP is to minimize the total generation cost by allocating power to individual generators, each with its local generation constraint. To save the overhead of communication resources between agents, an edge-based event-triggered mechanism is suggested. By setting distinct triggering thresholds for each communication edge, the agent may efficiently regulate the communication frequency among all neighbors. However, in practice, owing to the instability of the network, the agent may receive information regarding its neighbors, leading to communication lags for every communication link. The virtual agent technique and double-stochastic matrix augmentation technique provide an equivalent delay-free EDP. It is demonstrated that the proposed algorithm can asymptotically converge to the global optimal solution as long as the communication delay is arbitrary, time-varying, and random, but bounded. Objective and clear evidence is provided through a case study in smart grids to verify the algorithm's feasibility.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.