Shushen Guo, Yanhui Li, Yibing Zhang, Lu Yang, Wei Zhang
{"title":"Reduction of High-Frequency Core Loss of a Fe77.2Si11B8.5Cu0.8Nb2.5 Soft Magnetic Nanocrystalline Alloy by Minor Alloying","authors":"Shushen Guo, Yanhui Li, Yibing Zhang, Lu Yang, Wei Zhang","doi":"10.1007/s40195-024-01729-6","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing saturation magnetic flux density (<i>B</i><sub>s</sub>) while reducing high-frequency core loss in Finemet-type nanocrystalline alloys is of great significance in achieving the miniaturization, high-frequency, and energy-saving of modern power electronic devices. In this work, we first designed a high-<i>B</i><sub>s</sub> Fe<sub>77.2</sub>Si<sub>11</sub>B<sub>8.5</sub>Cu<sub>0.8</sub>Nb<sub>2.5</sub> alloy by appropriately reducing the non-magnetic elements in typical Finemet nanocrystalline alloys, and subsequently alloyed 2 at% Co, Al, and Mo, respectively. The effects of alloying elements on structure and static and high-frequency magnetic properties were studied. The results reveal that, alloying Al or Mo reduces the average α-Fe grain size (<i>D</i><sub>α-Fe</sub>) in the nanocrystalline alloys, while Co exhibits a slight influence. The added Al or Mo results in decreases in both the <i>B</i><sub>s</sub> and coercivity (<i>H</i><sub>c</sub>) of the nanocrystalline alloys, whereas Co increases the <i>B</i><sub>s</sub> without changing <i>H</i><sub>c</sub>, and meanwhile, all alloying elements show minimal effects on effective permeability (<i>μ</i><sub>e</sub>). Furthermore, the addition of Co, Al, or Mo lowers the core loss (<i>P</i><sub>cv</sub>) at 0.2 T/100 kHz of the based nanocrystalline alloy with reductions of 10.9%, 29.6%, and 26.8%, respectively. A Fe<sub>75.2</sub>Si<sub>11</sub>B<sub>8.5</sub>Cu<sub>0.8</sub>Nb<sub>2.5</sub>Al<sub>2</sub> nanocrystalline alloy exhibits outstanding soft magnetic properties with <i>B</i><sub>s</sub>, <i>H</i><sub>c</sub>, <i>μ</i><sub>e</sub> at 10 kHz and 100 kHz, and <i>P</i><sub>cv</sub> at 0.2 T/100 kHz of 1.34 T, 0.8 A/m, 27,400, 18,000, and 350 kW/m<sup>3</sup>, respectively. The reduction in <i>P</i><sub>cv</sub> is primarily attributed to the decreased eddy current losses, originating from the increased electrical resistivity by elements alloying.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01729-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing saturation magnetic flux density (Bs) while reducing high-frequency core loss in Finemet-type nanocrystalline alloys is of great significance in achieving the miniaturization, high-frequency, and energy-saving of modern power electronic devices. In this work, we first designed a high-Bs Fe77.2Si11B8.5Cu0.8Nb2.5 alloy by appropriately reducing the non-magnetic elements in typical Finemet nanocrystalline alloys, and subsequently alloyed 2 at% Co, Al, and Mo, respectively. The effects of alloying elements on structure and static and high-frequency magnetic properties were studied. The results reveal that, alloying Al or Mo reduces the average α-Fe grain size (Dα-Fe) in the nanocrystalline alloys, while Co exhibits a slight influence. The added Al or Mo results in decreases in both the Bs and coercivity (Hc) of the nanocrystalline alloys, whereas Co increases the Bs without changing Hc, and meanwhile, all alloying elements show minimal effects on effective permeability (μe). Furthermore, the addition of Co, Al, or Mo lowers the core loss (Pcv) at 0.2 T/100 kHz of the based nanocrystalline alloy with reductions of 10.9%, 29.6%, and 26.8%, respectively. A Fe75.2Si11B8.5Cu0.8Nb2.5Al2 nanocrystalline alloy exhibits outstanding soft magnetic properties with Bs, Hc, μe at 10 kHz and 100 kHz, and Pcv at 0.2 T/100 kHz of 1.34 T, 0.8 A/m, 27,400, 18,000, and 350 kW/m3, respectively. The reduction in Pcv is primarily attributed to the decreased eddy current losses, originating from the increased electrical resistivity by elements alloying.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.