Simulation of Gas Sweetening Process using Extended NRTL and Stages Efficiency as Modeling Approach

Aditya Kurniawan, Yusmardhany Yusuf, Ahnaf Hazimizzufar, Wildan Zanuar Herviansyah
{"title":"Simulation of Gas Sweetening Process using Extended NRTL and Stages Efficiency as Modeling Approach","authors":"Aditya Kurniawan, Yusmardhany Yusuf, Ahnaf Hazimizzufar, Wildan Zanuar Herviansyah","doi":"10.20961/equilibrium.v8i1.88301","DOIUrl":null,"url":null,"abstract":"Gas sweetening is a process to remove CO2 and H2S from natural gas. The current established technology is by using Amine contactor where the solvent used is in form of Amine solution. To simulate the effect of different solvent, electrolyte-NRTL is used to model the equilibrium, and mass transfer-kinetic is used to model the rate-based processes. This modeling approach is rather complex and available only in commercial and proprietary process simulation software. Therefore we propose an alternative modeling approach where we use extended NRTL and stage efficiency to model the acid gas absorption processes. We find that this approach is quite good to describe CO2 absorption, yet unsuccessful to calculate the H2S absorption. Inadequate vapor liquid equilibrium parameter regression for H2S, specifically at low partial pressure might cause the problem. However the stage efficiency approach shows good result where it is comparable to rate-based model and corresponds to current understanding of physico-chemical phenomenon of acid gas absorption.","PeriodicalId":11866,"journal":{"name":"Equilibrium Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Equilibrium Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/equilibrium.v8i1.88301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gas sweetening is a process to remove CO2 and H2S from natural gas. The current established technology is by using Amine contactor where the solvent used is in form of Amine solution. To simulate the effect of different solvent, electrolyte-NRTL is used to model the equilibrium, and mass transfer-kinetic is used to model the rate-based processes. This modeling approach is rather complex and available only in commercial and proprietary process simulation software. Therefore we propose an alternative modeling approach where we use extended NRTL and stage efficiency to model the acid gas absorption processes. We find that this approach is quite good to describe CO2 absorption, yet unsuccessful to calculate the H2S absorption. Inadequate vapor liquid equilibrium parameter regression for H2S, specifically at low partial pressure might cause the problem. However the stage efficiency approach shows good result where it is comparable to rate-based model and corresponds to current understanding of physico-chemical phenomenon of acid gas absorption.
使用扩展 NRTL 和阶段效率作为建模方法模拟天然气甜化过程
天然气增甜是一种去除天然气中二氧化碳和 H2S 的工艺。目前的成熟技术是使用胺接触器,其中使用的溶剂是胺溶液。为了模拟不同溶剂的影响,使用电解质-NRTL 建立平衡模型,并使用传质动力学建立基于速率的过程模型。这种建模方法相当复杂,只能在商业和专有过程模拟软件中使用。因此,我们提出了另一种建模方法,即使用扩展的 NRTL 和阶段效率来模拟酸性气体吸收过程。我们发现这种方法可以很好地描述 CO2 的吸收,但在计算 H2S 的吸收时却不成功。H2S 的汽液平衡参数回归不足,特别是在低分压条件下,可能是造成这一问题的原因。不过,阶段效率法显示出良好的结果,与基于速率的模型相当,并且符合目前对酸性气体吸收的物理化学现象的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信