Oxygenated carbon nitride-based high-energy-density lithium-metal batteries

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Mengnan Shen, Ying Wei, Man Ge, Shengdong Yu, Ronghui Dou, Liuhua Chen, Feng Wang, Yunhui Huang, Henghui Xu
{"title":"Oxygenated carbon nitride-based high-energy-density lithium-metal batteries","authors":"Mengnan Shen,&nbsp;Ying Wei,&nbsp;Man Ge,&nbsp;Shengdong Yu,&nbsp;Ronghui Dou,&nbsp;Liuhua Chen,&nbsp;Feng Wang,&nbsp;Yunhui Huang,&nbsp;Henghui Xu","doi":"10.1002/idm2.12201","DOIUrl":null,"url":null,"abstract":"<p>Lithium (Li)-metal batteries with polymer electrolytes are promising for high-energy-density and safe energy storage applications. However, current polymer electrolytes suffer either low ionic conductivity or inadequate ability to suppress Li dendrite growth at high current densities. This study addresses both issues by incorporating two-dimensional oxygenated carbon nitride (2D OCN) into a polyvinylidene fluoride (PVDF)-based composite polymer electrolyte and modifying the Li anode with OCN. The OCN nanosheets incorporated PVDF electrolyte exhibits a high ionic conductivity (1.6 × 10<sup>−4</sup> S cm<sup>−1</sup> at 25°C) and Li<sup>+</sup> transference number (0.62), wide electrochemical window (5.3), and excellent fire resistance. Furthermore, the OCN-modified Li anode in situ generates a protective layer of Li<sub>3</sub>N during cycling, preventing undesirable reactions with PVDF electrolyte and effectively suppressing Li dendrite growth. Symmetric cells using the upgraded PVDF polymer electrolyte and modified Li anode demonstrate long cycling stability over 2500 h at 0.1 mA cm<sup>−2</sup>. Full cells with a high-voltage LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode exhibit high energy density and long-term cycling stability, even at a high loading of 8.2 mg cm<sup>−2</sup>. Incorporating 2D OCN nanosheets into the PVDF-based electrolyte and Li-metal anode provides an effective strategy for achieving safe and high-energy-density Li-metal batteries.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"791-800"},"PeriodicalIF":24.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li)-metal batteries with polymer electrolytes are promising for high-energy-density and safe energy storage applications. However, current polymer electrolytes suffer either low ionic conductivity or inadequate ability to suppress Li dendrite growth at high current densities. This study addresses both issues by incorporating two-dimensional oxygenated carbon nitride (2D OCN) into a polyvinylidene fluoride (PVDF)-based composite polymer electrolyte and modifying the Li anode with OCN. The OCN nanosheets incorporated PVDF electrolyte exhibits a high ionic conductivity (1.6 × 10−4 S cm−1 at 25°C) and Li+ transference number (0.62), wide electrochemical window (5.3), and excellent fire resistance. Furthermore, the OCN-modified Li anode in situ generates a protective layer of Li3N during cycling, preventing undesirable reactions with PVDF electrolyte and effectively suppressing Li dendrite growth. Symmetric cells using the upgraded PVDF polymer electrolyte and modified Li anode demonstrate long cycling stability over 2500 h at 0.1 mA cm−2. Full cells with a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode exhibit high energy density and long-term cycling stability, even at a high loading of 8.2 mg cm−2. Incorporating 2D OCN nanosheets into the PVDF-based electrolyte and Li-metal anode provides an effective strategy for achieving safe and high-energy-density Li-metal batteries.

Abstract Image

含氧氮化碳基高能量密度锂金属电池
采用聚合物电解质的锂(Li)金属电池有望实现高能量密度和安全储能应用。然而,目前的聚合物电解质要么离子电导率低,要么在高电流密度下抑制锂枝晶生长的能力不足。本研究通过将二维含氧氮化碳(2D OCN)加入聚偏二氟乙烯(PVDF)基复合聚合物电解质并用 OCN 对锂阳极进行改性,解决了这两个问题。加入了 OCN 纳米片的 PVDF 电解质具有很高的离子电导率(25°C 时为 1.6 × 10-4 S cm-1)和 Li+ 转移数(0.62),电化学窗口宽(5.3),并且具有优异的耐火性。此外,OCN 改性锂阳极在循环过程中会在原位生成一层 Li3N 保护层,防止与 PVDF 电解液发生不良反应,并有效抑制锂枝晶的生长。使用升级后的 PVDF 聚合物电解质和改性锂阳极的对称电池在 0.1 mA cm-2 的条件下显示出长达 2500 小时的循环稳定性。采用高电压 LiNi0.8Co0.1Mn0.1O2 阴极的全电池即使在 8.2 mg cm-2 的高负载条件下也能表现出高能量密度和长期循环稳定性。在基于 PVDF 的电解质和锂金属阳极中加入二维 OCN 纳米片为实现安全、高能量密度的锂金属电池提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信