Weak Poissonian correlations

IF 1 3区 数学 Q1 MATHEMATICS
Manuel Hauke, Agamemnon Zafeiropoulos
{"title":"Weak Poissonian correlations","authors":"Manuel Hauke,&nbsp;Agamemnon Zafeiropoulos","doi":"10.1007/s10231-024-01463-x","DOIUrl":null,"url":null,"abstract":"<div><p>We examine a property of sequences called Poissonian pair correlations with parameter <span>\\(0\\leqslant \\beta \\leqslant 1\\)</span> (abbreviated as <span>\\(\\beta\\)</span>-PPC). We prove that when <span>\\(\\beta &lt;1,\\)</span> the property of <span>\\(\\beta\\)</span>-PPC, also known as weak Poissonian correlations, can be detected at the behaviour of sequences at small scales, and show that this does not happen for the classical notion of PPC, that is, when <span>\\(\\beta = 1\\)</span>. Furthermore, we show that whenever <span>\\(0\\leqslant \\alpha &lt; \\beta \\leqslant 1\\)</span>, <span>\\(\\beta\\)</span>-PPC is stronger than <span>\\(\\alpha\\)</span>-PPC. We also include a discussion on weak Poissonian correlations of higher orders, showing that for <span>\\(\\beta &lt; 1\\)</span>, Poissonian <span>\\(\\beta\\)</span>-correlations of order <span>\\(k+1\\)</span> imply Poissonian <span>\\(\\beta\\)</span>-correlations of <i>k</i>-th order with the same parameter <span>\\(\\beta\\)</span>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 6","pages":"2711 - 2740"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01463-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01463-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We examine a property of sequences called Poissonian pair correlations with parameter \(0\leqslant \beta \leqslant 1\) (abbreviated as \(\beta\)-PPC). We prove that when \(\beta <1,\) the property of \(\beta\)-PPC, also known as weak Poissonian correlations, can be detected at the behaviour of sequences at small scales, and show that this does not happen for the classical notion of PPC, that is, when \(\beta = 1\). Furthermore, we show that whenever \(0\leqslant \alpha < \beta \leqslant 1\), \(\beta\)-PPC is stronger than \(\alpha\)-PPC. We also include a discussion on weak Poissonian correlations of higher orders, showing that for \(\beta < 1\), Poissonian \(\beta\)-correlations of order \(k+1\) imply Poissonian \(\beta\)-correlations of k-th order with the same parameter \(\beta\).

弱泊松相关性
我们研究了序列的一个特性,即参数为(0\leqslant \beta \leqslant 1\)的泊松对相关性(简称为(\(\beta\)-PPC)。我们证明了当\(\beta <1,\)时,\(\beta\)-PPC(也称为弱泊松相关性)的特性可以在小尺度上的序列行为中被检测到,并且证明了对于经典的PPC概念,即当\(\beta = 1\) 时,这种情况不会发生。此外,我们还证明了当\(0\leqslant \alpha < \beta \leqslant 1\) 时,\(\beta\)-PPC 比\(\alpha\)-PPC 更强。我们还讨论了更高阶的弱泊松相关性,表明对于(\beta < 1\), 阶(k+1\)的泊松相关性意味着具有相同参数(\beta\)的k阶泊松相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信