{"title":"Numerical analysis of the axisymmetric lattice Boltzmann method for steady and oscillatory flows in periodic geometries","authors":"Samuel Stephen, Barbara Johnston, Peter Johnston","doi":"10.21914/anziamj.v64.17949","DOIUrl":null,"url":null,"abstract":"Compared to more typical computational fluid dynamics techniques, the lattice Boltzmann method (LBM) is relatively new and unexplored. In recent years, axisymmetric LBM formulations, which can simulate flow in rotationally symmetric 3D geometries, have been published. Here we verify a novel axisymmetric LBM implementation using numerical criteria. Hagen–Poiseuille and Womersley flow are considered within a straight tube where analytic solutions are available. With this, we establish sufficient accuracy of the approximated flow and study the effects of changing simulation parameters (e.g. Reynolds number, Womersley number) and spatial/temporal parameters (e.g. relaxation time, mesh nodes, time steps). Furthermore, steady and oscillatory flows within a periodically-varying, longitudinally asymmetric geometry are considered. Analytic solutions are not available in these cases; however, the validity of the axisymmetric LBM for curved boundaries is ensured through convergence, mesh independence and qualitative observations. Guaranteeing reasonable flow field determination for the aformentioned geometry is relevant to a larger problem where particulate suspension is pumped back and forth through a membrane of axisymmetric micropores. In these circumstances, experiments have induced directed particle transport even though there is no net flow of the carrier fluid. Hence, our work aims to improve current numerical simulations of these flow problems to better understand the factors that facilitate particle transport.\nReferences\n\nR. D. Astumian and P. Hänggi. Brownian motors. Phys. Today 55.11 (2002), pp. 33–39. doi: 10.1063/1.1535005. (Cit. on p. C214).\nW. R. Bowen and F. Jenner. Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review. Adv. Colloid Interface Sci. 56 (1995), pp. 141–200. doi: 10.1016/0001-8686(94)00232-2\nN. Islam. Fluid flow and particle transport through periodic capillaries. Bull. Aust. Math. Soc. 96.3 (2017), pp. 521–522. doi: 10.1017/S0004972717000739\nC. Kettner, P. Reimann, P. Hänggi, and F. Müller. Drift ratchet. Phys. Rev. E 61.1 (2000), pp. 312–323. doi: 10.1103/PhysRevE.61.312 S. H. Kim and H. Pitsch. A generalized periodic boundary condition for lattice Boltzmann method simulation of a pressure driven flow in a periodic geometry. Phys. Fluids 19.10, 108101 (2007). doi: 10.1063/1.2780194\nT. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen. The lattice Boltzmann method: Principles and practice. Vol. 10. Graduate Texts in Physics. Springer, 2017, pp. 978–3. doi: 10.1007/978-3-319-44649-3\nS. Matthias and F. Müller. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature 424 (2003), pp. 53–57. doi: 10.1038/nature01736\nS. J. Stephen, B. M. Johnston, and P. R. Johnston. Comparing lattice Boltzmann simulations of periodic fluid flow in repeated micropore structures with longitudinal symmetry and asymmetry. Proceedings of the 15th Biennial Engineering Mathematics and Applications Conference, EMAC-2021. Ed. by A. Clark, Z. Jovanoski, and J. Bunder. Vol. 63. ANZIAM J. 2022, pp. C69–C83. doi: 10.21914/anziamj.v63.17158\nW. Wang and J. Zhou. Enhanced Lattice Boltzmann modelling of axisymmetric flows. Proceedings of the Institution of Civil Engineers—Engineering and Computational Mechanics 167.4 (2014), pp. 156–166. doi: 10.1680/eacm.14.00005\nJ. G. Zhou. Axisymmetric lattice Boltzmann method revised. Phys. Rev. E 84.3, 036704 (2011). doi: 10.1103/PhysRevE.84.036704\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21914/anziamj.v64.17949","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to more typical computational fluid dynamics techniques, the lattice Boltzmann method (LBM) is relatively new and unexplored. In recent years, axisymmetric LBM formulations, which can simulate flow in rotationally symmetric 3D geometries, have been published. Here we verify a novel axisymmetric LBM implementation using numerical criteria. Hagen–Poiseuille and Womersley flow are considered within a straight tube where analytic solutions are available. With this, we establish sufficient accuracy of the approximated flow and study the effects of changing simulation parameters (e.g. Reynolds number, Womersley number) and spatial/temporal parameters (e.g. relaxation time, mesh nodes, time steps). Furthermore, steady and oscillatory flows within a periodically-varying, longitudinally asymmetric geometry are considered. Analytic solutions are not available in these cases; however, the validity of the axisymmetric LBM for curved boundaries is ensured through convergence, mesh independence and qualitative observations. Guaranteeing reasonable flow field determination for the aformentioned geometry is relevant to a larger problem where particulate suspension is pumped back and forth through a membrane of axisymmetric micropores. In these circumstances, experiments have induced directed particle transport even though there is no net flow of the carrier fluid. Hence, our work aims to improve current numerical simulations of these flow problems to better understand the factors that facilitate particle transport.
References
R. D. Astumian and P. Hänggi. Brownian motors. Phys. Today 55.11 (2002), pp. 33–39. doi: 10.1063/1.1535005. (Cit. on p. C214).
W. R. Bowen and F. Jenner. Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review. Adv. Colloid Interface Sci. 56 (1995), pp. 141–200. doi: 10.1016/0001-8686(94)00232-2
N. Islam. Fluid flow and particle transport through periodic capillaries. Bull. Aust. Math. Soc. 96.3 (2017), pp. 521–522. doi: 10.1017/S0004972717000739
C. Kettner, P. Reimann, P. Hänggi, and F. Müller. Drift ratchet. Phys. Rev. E 61.1 (2000), pp. 312–323. doi: 10.1103/PhysRevE.61.312 S. H. Kim and H. Pitsch. A generalized periodic boundary condition for lattice Boltzmann method simulation of a pressure driven flow in a periodic geometry. Phys. Fluids 19.10, 108101 (2007). doi: 10.1063/1.2780194
T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen. The lattice Boltzmann method: Principles and practice. Vol. 10. Graduate Texts in Physics. Springer, 2017, pp. 978–3. doi: 10.1007/978-3-319-44649-3
S. Matthias and F. Müller. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature 424 (2003), pp. 53–57. doi: 10.1038/nature01736
S. J. Stephen, B. M. Johnston, and P. R. Johnston. Comparing lattice Boltzmann simulations of periodic fluid flow in repeated micropore structures with longitudinal symmetry and asymmetry. Proceedings of the 15th Biennial Engineering Mathematics and Applications Conference, EMAC-2021. Ed. by A. Clark, Z. Jovanoski, and J. Bunder. Vol. 63. ANZIAM J. 2022, pp. C69–C83. doi: 10.21914/anziamj.v63.17158
W. Wang and J. Zhou. Enhanced Lattice Boltzmann modelling of axisymmetric flows. Proceedings of the Institution of Civil Engineers—Engineering and Computational Mechanics 167.4 (2014), pp. 156–166. doi: 10.1680/eacm.14.00005
J. G. Zhou. Axisymmetric lattice Boltzmann method revised. Phys. Rev. E 84.3, 036704 (2011). doi: 10.1103/PhysRevE.84.036704
与更典型的计算流体力学技术相比,晶格玻尔兹曼法(LBM)相对较新,尚未得到探索。近年来,可以模拟旋转对称三维几何图形中流动的轴对称 LBM 公式已经发表。在此,我们利用数值标准验证了一种新颖的轴对称 LBM 实现方法。我们考虑了直管内的哈根-普瓦耶流和沃默斯利流,在直管内可以得到解析解。由此,我们确定了近似流动的足够精度,并研究了改变模拟参数(如雷诺数、沃默斯利数)和空间/时间参数(如弛豫时间、网格节点、时间步长)的影响。此外,还考虑了周期性变化的纵向不对称几何体中的稳定流和振荡流。在这些情况下,无法获得解析解;但是,通过收敛性、网格独立性和定性观察,可以确保轴对称 LBM 对曲线边界的有效性。保证上述几何形状的合理流场确定与颗粒悬浮液在轴对称微孔膜中来回泵送的更大问题有关。在这种情况下,即使载流体流体没有净流动,实验也会诱发粒子定向传输。因此,我们的工作旨在改进目前对这些流动问题的数值模拟,以更好地了解促进粒子传输的因素。D. Astumian 和 P. Hänggi.布朗运动Doi: 10.1063/1.1535005.(同上,第 C214 页).W. R. Bowen 和 F. Jenner.胶体和细颗粒膜过滤的理论描述:评估与回顾。Adv.Doi: 10.1016/0001-8686(94)00232-2N.Islam.流体流动和颗粒在周期性毛细管中的传输。Bull.Aust.Math. Soc.96.3 (2017),pp. 521-522. doi: 10.1017/S0004972717000739C.Kettner, P. Reimann, P. Hänggi, and F. Müller.漂移棘轮。Doi: 10.1103/PhysRevE.61.312 S. H. Kim and H. Pitsch.格点玻尔兹曼法模拟周期几何中压力驱动流的广义周期边界条件。DOI: 10.1063/1.2780194T.Krüger、H. Kusumaatmaja、A. Kuzmin、O. Shardt、G. Silva 和 E. M. Viggen。晶格玻尔兹曼法:Principles and practice.Vol.Graduate Texts in Physics.Springer,2017,pp.978-3.doi:10.1007/978-3-319-44649-3S.Matthias and F. Müller.硅膜上的非对称孔隙充当大规模平行布朗运动棘轮。doi: 10.1038/nature01736S.J. Stephen, B. M. Johnston, and P. R. Johnston.具有纵向对称性和非对称性的重复微孔结构中周期性流体流动的格子玻尔兹曼模拟比较。第 15 届双年工程数学与应用会议论文集,EMAC-2021。由 A. Clark、Z. Jovanoski 和 J. Bunder 编辑。第 63 卷。ANZIAM J. 2022, pp.Wang and J. Zhou.轴对称流的增强型格点玻尔兹曼建模.Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics 167.4 (2014),pp. 156-166. doi: 10.1680/eacm.14.00005J.G. Zhou.轴对称晶格玻尔兹曼方法修订。DOI: 10.1103/PhysRevE.84.036704
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.