{"title":"Future change in the contribution of riming and depositional growth to the surface solid precipitation in Hokkaido, Japan","authors":"Yousuke Sato, Moeka Kamada, Akihiro Hashimoto, Masaru Inatsu","doi":"10.1175/jamc-d-23-0226.1","DOIUrl":null,"url":null,"abstract":"\nThis study examined future changes in the microphysical properties of surface solid precipitation over Hokkaido, Japan. A process-tracking model that predicts the mass of the hydrometeors generated by each cloud microphysical process was implemented in a meteorological model. This implementation aimed to analyze the mass fraction of hydrometeors resulting from depositional growth and the riming process to the total mass of surface solid precipitation. Results from pseudo-global warming experiments suggest two potential future changes in the characteristics of surface solid precipitation over Hokkaido. First, the rimed particles are expected to increase and be dominant over the west and northwest coast of Hokkaido, where heavy snowfall occurs primarily due to the lake effect. Second, the mass fraction from depositional growth under relatively higher temperatures is expected to increase. This increase is anticipated to be dominant over the eastern part and mountainous area of Hokkaido. Additionally, the fraction of liquid precipitation to total precipitation is expected to increase in the future. These results suggest that the microphysical properties of solid precipitation in Hokkaido are expected to be similar to those observed in the current climate over Hokuriku, the central part of Japan even in warmer climate conditions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"29 15","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0226.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examined future changes in the microphysical properties of surface solid precipitation over Hokkaido, Japan. A process-tracking model that predicts the mass of the hydrometeors generated by each cloud microphysical process was implemented in a meteorological model. This implementation aimed to analyze the mass fraction of hydrometeors resulting from depositional growth and the riming process to the total mass of surface solid precipitation. Results from pseudo-global warming experiments suggest two potential future changes in the characteristics of surface solid precipitation over Hokkaido. First, the rimed particles are expected to increase and be dominant over the west and northwest coast of Hokkaido, where heavy snowfall occurs primarily due to the lake effect. Second, the mass fraction from depositional growth under relatively higher temperatures is expected to increase. This increase is anticipated to be dominant over the eastern part and mountainous area of Hokkaido. Additionally, the fraction of liquid precipitation to total precipitation is expected to increase in the future. These results suggest that the microphysical properties of solid precipitation in Hokkaido are expected to be similar to those observed in the current climate over Hokuriku, the central part of Japan even in warmer climate conditions.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.