Junhao Ge, Jibo Tang, Yu Wu, Shunping Zhang, Hongxing Xu
{"title":"Memristive Thermal Radiator by Highly Tunable Graphene Plasmon","authors":"Junhao Ge, Jibo Tang, Yu Wu, Shunping Zhang, Hongxing Xu","doi":"10.1002/apxr.202300144","DOIUrl":null,"url":null,"abstract":"<p>The dynamic regulation of thermal radiation in the mid-infrared region is technologically important in diverse applications such as thermal management and camouflage. However, there is a notable lack of research on the combination of infrared radiators and memristors, which can maintain previous states or modes without extra power consumption. Here, a memristive mid-infrared radiator, where graphene nanoribbon grating serves simultaneously as a floating gate for charge storage and a tunable infrared nanoantenna for thermal radiation is proposed. This design enables precise and fast modulation, low power consumption, and scalability. Even a small change of one attocoulomb in the stored charge can produce a 1-µm peak shift in the absorption peak. This work provides a platform for a memristive infrared thermal radiator that can be further exploited for electrochromic glazing or on-chip radiative cooling.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202300144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic regulation of thermal radiation in the mid-infrared region is technologically important in diverse applications such as thermal management and camouflage. However, there is a notable lack of research on the combination of infrared radiators and memristors, which can maintain previous states or modes without extra power consumption. Here, a memristive mid-infrared radiator, where graphene nanoribbon grating serves simultaneously as a floating gate for charge storage and a tunable infrared nanoantenna for thermal radiation is proposed. This design enables precise and fast modulation, low power consumption, and scalability. Even a small change of one attocoulomb in the stored charge can produce a 1-µm peak shift in the absorption peak. This work provides a platform for a memristive infrared thermal radiator that can be further exploited for electrochromic glazing or on-chip radiative cooling.