{"title":"Firing pattern manipulation of neuronal networks by deep unfolding-based model predictive control","authors":"Jumpei Aizawa, Masaki Ogura, Masanori Shimono, Naoki Wakamiya","doi":"10.1049/cth2.12717","DOIUrl":null,"url":null,"abstract":"<p>The complexity of neuronal networks, characterized by interconnected neurons, presents significant challenges in control due to their nonlinear and intricate behaviour. This paper introduces a novel method designed to generate control inputs for neuronal networks to regulate the firing patterns of modules within the network. This methodology is built upon temporal deep unfolding-based model predictive control, a technique rooted in the deep unfolding method commonly used in wireless signal processing. To address the unique dynamics of neurons, such as zero gradients in firing times, the method employs approximations of input currents using a sigmoid function during its development. The effectiveness of this approach is validated through extensive numerical simulations. Furthermore, control experiments were conducted by reducing the number of input neurons to identify critical features for control. Various selection techniques were utilized to pinpoint key input neurons. These experiments shed light on the importance of specific input neurons in controlling module firing within neuronal networks. Thus, this study presents a tailored methodology for managing networked neurons, extends temporal deep unfolding-based model predictive control to nonlinear systems with reset dynamics, and demonstrates its ability to achieve desired firing patterns in neuronal networks.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 15","pages":"2003-2013"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12717","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12717","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity of neuronal networks, characterized by interconnected neurons, presents significant challenges in control due to their nonlinear and intricate behaviour. This paper introduces a novel method designed to generate control inputs for neuronal networks to regulate the firing patterns of modules within the network. This methodology is built upon temporal deep unfolding-based model predictive control, a technique rooted in the deep unfolding method commonly used in wireless signal processing. To address the unique dynamics of neurons, such as zero gradients in firing times, the method employs approximations of input currents using a sigmoid function during its development. The effectiveness of this approach is validated through extensive numerical simulations. Furthermore, control experiments were conducted by reducing the number of input neurons to identify critical features for control. Various selection techniques were utilized to pinpoint key input neurons. These experiments shed light on the importance of specific input neurons in controlling module firing within neuronal networks. Thus, this study presents a tailored methodology for managing networked neurons, extends temporal deep unfolding-based model predictive control to nonlinear systems with reset dynamics, and demonstrates its ability to achieve desired firing patterns in neuronal networks.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.