{"title":"The Effect of Yinchenhao Decoction on the Pharmacokinetic Profile of Futibatinib by HPLC-MS/MS","authors":"Chunfu Wang, Songmao Liang, Jiachen Xu, Yingfan Zhai, Jianghui Chen, Xiangjun Qiu","doi":"10.3390/separations11070213","DOIUrl":null,"url":null,"abstract":"Futibatinib is an excellent fibroblast growth factor receptor 1–4 (FGFR 1–4) inhibitor that exhibits selective anti-tumor activeness against FGFR-deregulated tumors. A new high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique for the quantitative analysis of futibatinib in beagle dog plasma was developed, and the effect of Yinchenhao decoction (YCHD) on the pharmacokinetics of futibatinib was evaluated. After processing plasma samples with ethyl acetate extraction in the alkaline condition of sodium carbonate, a C18 column (4.6 mm × 150, 5 μm) was used to accomplish the separation of futibatinib and ripretinib (internal standard, ISTD), with the mobile phase consisting of methanol and 0.1% formic acid in water (60:40). The scanning method adopted a multiple reaction monitoring (MRM) mode with positive ion detection through the triple quadrupole mass spectrometer. The ion transitions for futibatinib and IS were m/z 419.20 → 296.15 and m/z 510.36 → 417.00, respectively. Futibatinib displayed excellent linearity in the range of 1–200 ng/mL. Neither inter-day nor intra-day precision exceeded 6.3%. The %RE values for accuracy ranged from −3.1% to 0.9%. The recovery, stability, and matrix effect of futibatinib also complied with the guidelines for the validation of quantitative analysis methods for biological samples in the 2020 edition of the Chinese Pharmacopoeia. In combination with YCHD, the Cmax of futibatinib increased by 40.84% compared to futibatinib dosage alone., and the AUC(0–t) and AUC(0–∞) of futibatinib increased by 78.06% and 82.71%, respectively. The Vd and CL of futibatinib were reduced by 20.05% and 40.85%, respectively. T1/2 was extended from 3.88 h to 5.26 h. The results indicated that YCHD could affect the pharmacokinetics of futibatinib and increase the plasma exposure of futibatinib. If YCHD is administered along with futibatinib, this study gives a first impression how pharmacokinetics and toxicokinetics would change.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11070213","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Futibatinib is an excellent fibroblast growth factor receptor 1–4 (FGFR 1–4) inhibitor that exhibits selective anti-tumor activeness against FGFR-deregulated tumors. A new high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique for the quantitative analysis of futibatinib in beagle dog plasma was developed, and the effect of Yinchenhao decoction (YCHD) on the pharmacokinetics of futibatinib was evaluated. After processing plasma samples with ethyl acetate extraction in the alkaline condition of sodium carbonate, a C18 column (4.6 mm × 150, 5 μm) was used to accomplish the separation of futibatinib and ripretinib (internal standard, ISTD), with the mobile phase consisting of methanol and 0.1% formic acid in water (60:40). The scanning method adopted a multiple reaction monitoring (MRM) mode with positive ion detection through the triple quadrupole mass spectrometer. The ion transitions for futibatinib and IS were m/z 419.20 → 296.15 and m/z 510.36 → 417.00, respectively. Futibatinib displayed excellent linearity in the range of 1–200 ng/mL. Neither inter-day nor intra-day precision exceeded 6.3%. The %RE values for accuracy ranged from −3.1% to 0.9%. The recovery, stability, and matrix effect of futibatinib also complied with the guidelines for the validation of quantitative analysis methods for biological samples in the 2020 edition of the Chinese Pharmacopoeia. In combination with YCHD, the Cmax of futibatinib increased by 40.84% compared to futibatinib dosage alone., and the AUC(0–t) and AUC(0–∞) of futibatinib increased by 78.06% and 82.71%, respectively. The Vd and CL of futibatinib were reduced by 20.05% and 40.85%, respectively. T1/2 was extended from 3.88 h to 5.26 h. The results indicated that YCHD could affect the pharmacokinetics of futibatinib and increase the plasma exposure of futibatinib. If YCHD is administered along with futibatinib, this study gives a first impression how pharmacokinetics and toxicokinetics would change.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization