Evaluating the Expressive Range of Super Mario Bros Level Generators

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2024-07-11 DOI:10.3390/a17070307
Hans Schaa, Nicolas A. Barriga
{"title":"Evaluating the Expressive Range of Super Mario Bros Level Generators","authors":"Hans Schaa, Nicolas A. Barriga","doi":"10.3390/a17070307","DOIUrl":null,"url":null,"abstract":"Procedural Content Generation for video games (PCG) is widely used by today’s video game industry to create huge open worlds or enhance replayability. However, there is little scientific evidence that these systems produce high-quality content. In this document, we evaluate three open-source automated level generators for Super Mario Bros in addition to the original levels used for training. These are based on Genetic Algorithms, Generative Adversarial Networks, and Markov Chains. The evaluation was performed through an Expressive Range Analysis (ERA) on 200 levels with nine metrics. The results show how analyzing the algorithms’ expressive range can help us evaluate the generators as a preliminary measure to study whether they respond to users’ needs. This method allows us to recognize potential problems early in the content generation process, in addition to taking action to guarantee quality content when a generator is used.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17070307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Procedural Content Generation for video games (PCG) is widely used by today’s video game industry to create huge open worlds or enhance replayability. However, there is little scientific evidence that these systems produce high-quality content. In this document, we evaluate three open-source automated level generators for Super Mario Bros in addition to the original levels used for training. These are based on Genetic Algorithms, Generative Adversarial Networks, and Markov Chains. The evaluation was performed through an Expressive Range Analysis (ERA) on 200 levels with nine metrics. The results show how analyzing the algorithms’ expressive range can help us evaluate the generators as a preliminary measure to study whether they respond to users’ needs. This method allows us to recognize potential problems early in the content generation process, in addition to taking action to guarantee quality content when a generator is used.
评估《超级马里奥兄弟》关卡生成器的表达范围
电子游戏程序内容生成(PCG)被当今的电子游戏产业广泛用于创建巨大的开放世界或增强可玩性。然而,几乎没有科学证据表明这些系统能生成高质量的内容。在本文中,除了用于训练的原始关卡外,我们还评估了《超级马里奥兄弟》的三种开源自动关卡生成器。它们分别基于遗传算法、生成对抗网络和马尔可夫链。评估是通过对 200 个关卡的九个指标进行表达范围分析(ERA)来完成的。结果表明,分析算法的表达范围可以帮助我们对生成器进行初步评估,研究它们是否能满足用户的需求。通过这种方法,我们可以在内容生成过程中及早发现潜在问题,并在使用生成器时采取措施保证内容质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信