Echocardiographic cardiac views classification using whale optimization and weighted support vector machine

Canqui Flores Bernabe, Romel P. Melgarejo-Bolivar, Alfredo Tumi-Figueroa, S. Thirukumaran, G. M. Devi, Sudhakar Sengan
{"title":"Echocardiographic cardiac views classification using whale optimization and weighted support vector machine","authors":"Canqui Flores Bernabe, Romel P. Melgarejo-Bolivar, Alfredo Tumi-Figueroa, S. Thirukumaran, G. M. Devi, Sudhakar Sengan","doi":"10.20517/2574-1209.2023.140","DOIUrl":null,"url":null,"abstract":"Aim: A significant medical diagnostic tool for monitoring cardiovascular health and function is 2D electrocardiograms. For computerized echocardiogram (echo) analysis, recognizing how this device performs is essential. This paper primarily focuses on detecting the transducer's viewpoint in cardiac echo videos using spatiotemporal data. It distinguishes between different viewpoints by monitoring the heart's function and rate throughout the cycle of heartbeats. Computer-aided diagnosis (CAD) examination sizes are the first steps toward computerized classification of cardiac imaging tests. Since clinical analysis frequently starts with automatic classification, the current view can enhance the detection of Cardiac Vascular Disease (CVD).\n Methods: This research article uses a Machine Learning (ML) algorithm called the Integrated Metaheuristic Technique (IMT), which is the Whale Optimization Algorithm with Weighted Support Vector Machine (WOA-WSVM).\n Results: The parameters in the classification are optimized with the assistance of WOA, and the echo is classified using WSVM. The WOA-WSVM classifies the images effectively and achieves an accuracy of 98.4%.\n Conclusion: The numerical analysis states that the WOA-WSVM technique outperforms the existing state-of-the-art algorithms.","PeriodicalId":75299,"journal":{"name":"Vessel plus","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vessel plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/2574-1209.2023.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: A significant medical diagnostic tool for monitoring cardiovascular health and function is 2D electrocardiograms. For computerized echocardiogram (echo) analysis, recognizing how this device performs is essential. This paper primarily focuses on detecting the transducer's viewpoint in cardiac echo videos using spatiotemporal data. It distinguishes between different viewpoints by monitoring the heart's function and rate throughout the cycle of heartbeats. Computer-aided diagnosis (CAD) examination sizes are the first steps toward computerized classification of cardiac imaging tests. Since clinical analysis frequently starts with automatic classification, the current view can enhance the detection of Cardiac Vascular Disease (CVD). Methods: This research article uses a Machine Learning (ML) algorithm called the Integrated Metaheuristic Technique (IMT), which is the Whale Optimization Algorithm with Weighted Support Vector Machine (WOA-WSVM). Results: The parameters in the classification are optimized with the assistance of WOA, and the echo is classified using WSVM. The WOA-WSVM classifies the images effectively and achieves an accuracy of 98.4%. Conclusion: The numerical analysis states that the WOA-WSVM technique outperforms the existing state-of-the-art algorithms.
利用鲸鱼优化和加权支持向量机进行超声心动图心脏视图分类
目的:二维心电图是监测心血管健康和功能的重要医疗诊断工具。对于计算机化超声心动图(回声)分析而言,识别该设备的性能至关重要。本文主要侧重于利用时空数据检测心脏回波视频中传感器的视角。它通过监测整个心跳周期中的心脏功能和心率来区分不同的视点。计算机辅助诊断(CAD)检查尺寸是实现心脏成像检查计算机分类的第一步。由于临床分析经常从自动分类开始,因此目前的观点可以提高对心脏血管疾病(CVD)的检测。方法:本研究文章使用了一种名为综合元启发式技术(IMT)的机器学习(ML)算法,即带有加权支持向量机(WOA-WSVM)的鲸鱼优化算法。结果在 WOA 的帮助下优化了分类参数,并使用 WSVM 对回声进行了分类。WOA-WSVM 能有效地对图像进行分类,准确率达到 98.4%。结论数值分析表明,WOA-WSVM 技术优于现有的最先进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信